88 research outputs found

    APLIKASI ARTIFICIAL NEURAL NETWORK UNTUK PERAMALAN ALIRAN SUNGAI BLEGA

    Get PDF
    A multivariate non-linear model for synthetic generation (forecasting) of daily flow (discharge) series is presented in this dtudy. The time series is built upon a multilayer feedfoward neural network with an added multivariate random component normally distributed. The usual error backpropagation algorithm is used to train the network, with a sequaential training scheme using shuffled patterns for a stochastic search in the weight space. Using neural network model, study case of Blega River-Madura island. The results by calculating show that the solution based on backpropagation algorithms are consistent with those based multivariate regression model. They also indicate that backpropagation model in this paper is reasonable and feasible

    Rasionalisasi Kerapatan Stasiun Hujan Wilayah Sungai Rokan Berdasarkan Data Hujan Harian dan Variasi Tingkat Kesalahan: Rationalization of Rain Station Density in the Rokan River Basin Territory Based on Daily Rain Data and Variation of Error Levels

    Get PDF
    [ID] Sebaran lokasi dan jumlah stasiun hujan ideal akan merepresentasikan kejadian hujan untuk menunjang akurasi informasi analisis di suatu wilayah. Kerapatan stasiun hujan eksisting dikaji berdasarkan metode standar World Meteorogical Organization sedangkan analisis rasionalisasi jumlah dan sebaran stasiun hujan berdasarkan data hujan harian dan variasi tingkat kesalahan menggunakan Metode Kagan-Rodda. Metode Kagan-Rodda telah digunakan di beberapa wilayah penelitian dengan beragam kategori fisiografi dan lingkup terbatas pada daerah aliran sungai. Sehingga dirasa perlu melakukan pengembangan cakupan penelitian untuk wilayah yang lebih luas yaitu Wilayah Sungai. Lokasi penelitian adalah Wilayah Sungai Rokan dengan fisiografi dataran tropis mediteran dan sedang seluas 22.455,28 km². Stasiun hujan eksisting berjumlah 13 stasiun hujan dan 1 stasiun tidak lolos Uji F, koefisien luasan Thiessen eksisting tidak merata sebesar 165,03 km2-3.758,12 km2 (0,007-0,17), dan korelasi hujan harian sebesar 0,03-0,37. Evaluasi analisis WMO menghasilkan 7 stasiun hujan yang memenuhi standar untuk luas daerah pengaruh sebesar 1.000–2.500 km2/stasiun. Perhitungan metode Kagan-Rodda dilakukan 2 skenario kesalahan perataan, skenario I dengan kesalahan perataan (Z1) sebesar 4,93% menghasilkan 37 stasiun hujan, luasan pengaruh Thiessen 273,89 km2–1197,80 km2 (0,01-0,05), nilai r(0) sebesar 0,20, jarak antar stasiun hujan sejauh 26,36 km, dan 2 stasiun memenuhi standar WMO. Sedangkan skenario II dengan Z1 sebesar 9,72% menghasilkan 10 stasiun hujan, dimana mempertahankan 2 stasiun, memindahkan 8 stasiun dan menutup 3 stasiun diperoleh luasan pengaruh Thiessen 1.691,71 km2–2.488,21 km2 (0,08-0,11), jarak antar stasiun hujan sejauh 50,70 km, dan seluruh stasiun memenuhi standar WMO. Rasionalisasi metode Kagan-Rodda skenario II relatif mewakili luas pengaruh wilayah dibandingkan skenario I. [EN] The distribution of locations and the number of ideal rain stations will represent rain events to support the accuracy of analytical information in an area. The density of existing rain stations was assessed based on the standard method of the World Meteorological Organization, while the rationalization analysis of the number and distribution of rain stations based on daily rainfall data and variations in error rates used the Kagan-Rodda method. The Kagan-Rodda method has been used in several research areas with various physiographic categories and limited scope in watersheds. So it is necessary to develop the scope of research for a wider area, namely the River Basin. The research location is the Rokan River Basin with physiography of the Mediterranean and medium tropical plains covering an area of ​​22,455.28 km². The existing rain stations are 13 rain stations and 1 station does not pass the F test, the coefficient of the existing Thiessen area is uneven at 165.03 km2-3,758.12 km2 (0.007-0.17), and the daily rainfall correlation is 0.03-0, 37. WMO analysis evaluation resulted in 7 rain stations that met the standard for the area of ​​influence of 1,000–2,500 km2/station. The calculation of the Kagan-Rodda method is carried out in 2 scenarios of smoothing error, scenario I with an alignment error (Z1) of 4.93% resulting in 37 rain stations, the area of ​​influence of Thiessen is 273.89 km2–1197.80 km2 (0.01-0.05) , the value of r(0) is 0.20, the distance between rain stations is 26.36 km, and 2 stations meet the WMO standard. While scenario II with Z1 of 9.72% produces 10 rain stations, which maintains 2 stations, moves 8 stations and closes 3 stations, the Thiessen influence area is 1,691.71 km2–2,488.21 km2 (0.08-0.11), the distance between rain stations is 50.70 km, and all stations meet WMO standards. The rationalization of the Kagan-Rodda method in scenario II is relatively representative of the area of ​​influence compared to scenario I

    Identifikasi Parameter Signifiakn dalam Penentuan Prioritas Rencana Pengembangan Daerah Irigasi (di) Kabupaten Rokan Hulu

    Full text link
    Rokan Hulu is one of districts that are members of the Operasi Pangan Riau Mandiri program (OPRM) which is a program implemented by the Riau Province in order to achieve self-sufficiency in rice for the Riau Province in 2013. To support the program, the governments of Rokan Hulu sought to develop rice fields irrigated area. Under budget constraint it is necessary to identify priority in the development plan for the irrigation area.This research discusses prioritization approache in developing of the irrigation areas based from the Analytical Hierarchy Process (AHP) method. Five criteria for development of the irrigation areas are prioritited as follow: technical aspec, economic, environmental, social/cultural and institutional.The results of the AHP analysis obtained the significant parameters as the following order: institutional (45,0%), technical criteria (21,9%), economic criteria (18,6%), Social/Culture criteria (8,6%), and environmental criteria (5,9%). The significant sub-criteria as the following order: the performance of farmer groups P3A, the condition and function of irrigation channel, availability of rehabilitation funds from local government (APBD), the availability of farmers implementing and availability of water resources. The significant irrigation areas are prioritited as follow Kaiti Samo irrigation area (56,9%)I, Menaming irrigation area (19,7%)II, Palis irrigation area (14,2%)III, Perak irrigation area (9,3%)IV

    Prioritization of Irrigation Areas Based on the Analytical Hierarchy Process (AHP) at the Rokan Hulu Regency, Riau, Indonesia

    Get PDF
    The Riau Province, Indonesia has launched a Program of Food Self-Sufficiency (Operasi Pangan Riau Mandiri program) since 2013, which the main objective was to achieve self-sufficiency in the rice production. Under the local government budget constraints, only small numbers of the existing irrigated areas were able to be further developed. The Analytical Hierarchy Process (AHP) method was applied in assisting the local government of the Rokan Hulu regency in selecting and prioritizing which irrigated areas will be developed. This study identified five significant criteria for the development of irrigated area, such as: (i) institutional capacity building criteria (weight value = 45.6%), (ii) technical one (21.3%), (iii) economic (19.2%), (iv) social/culture (8.1%), and (v) environmental criteria (5.8%). The higher the weighted value of the criteria, the more important it will be. The priority irrigation areas in need to be developed were as the following order: (i) Kaiti Samo irrigation area (weight value = 56%), (ii) Menaming irrigation area (20%), (iii) Palis (14%), and (iv) Perak (10%). These criteria may fit the research objective in selecting the most important irrigated location to be developed

    ANALISIS ALOKASI AIR DAERAH ALIRAN SUNGAI TAPUNG KANAN

    Get PDF
    Daerah Aliran Sungai (DAS) Tapung Kanan merupakan bagian Sub DAS dari DAS Siak yang terdapat pada Wilayah Sungai Siak, yang mana merupakan salah satu DAS dengan kondisi kritis dan memerlukan prioritas penanganan. Hal ini dikarenakan pemanfaatan sumber daya air yang tidak terkendali sehingga menyebabkan ketersedian air cenderung berkurang dan kualitas air menurun. Akibat dari permasalahan ini, maka diperlukan pengelolaan dan pengalokasian air untuk menyediakan dan merealisasikan kebutuhan air untuk para pengguna air. Penelitian ini dilakukan bertujuan untuk, menganalisis potensi ketersediaan air pada DAS Tapung Kanan, menganalisis kesetimbangan antara potensi ketersediaan air dan kebutuhan air (neraca air) pada DAS Tapung Kanan, dan melakukan alokasi air pada DAS Tapung Kanan dengan prioritas pemanfaatan air berdasarkan rekomendasi teknis dari instansi terkait. Metode penelitian yang digunakan yaitu metode deskriptif analisis. Metode analisis ketersediaan air yang digunakan yaitu metode regional. Analisis neraca air dilakukan pada 3 asumsi skenario, meliputi musim kering, musim normal, dan musim basah. Hasil dari penelitian ini yaitu setiap node DAS Tapung Kanan menunjukkan kondisi neraca air surplus pada rencana alokasi air yang akan digunakan berdasarkan prakiraan sifat musim hujan 2022/2023 yang dikeluarkan oleh BMKG yaitu skenario musim normal. Pada musim kering terdapat beberapa node yang mengalami defisit, maka besar air yang dialokasikan perlu dikurangi atau mengatur faktor k

    Analisis Stabilitas Bendung (Studi Kasus : Bendung Tamiang)

    Full text link
    The objective of This study is to analyze the stability of a weir. The weir that is used to analyze is Tamiang weir. This weir is located in Kotanopan Mandailing Natal District of North Sumatra Province. This weir is in Batang Gadis River flow and included in Batang Gadis river flow area. In this study case, the methodology that is used are, the first times is calculating the forces that work against the body of weir. The forces that form the weir body, hydrostatic pressure, mud pressure and seismic. After getting the data, then, these forces are accumulated in four components, they are the vertical forces, horizontal forces, torque resistant, and bolsters moments. From the vertical and horizontal forces will obtain the figure of safety factor for sliding, while the resistant moments and overturning moments will obtain the figure to safety factor for overturning. The input data on this study are the hydrology data, soil data, and weir drawing design. While the output of the safety factor against shear numbers and figures to bolster the safety factor. The results that obtain in this study are 2,35 for sliding safety factor and 3,33 for overturning. Those two results are higher than the stability that required with the minimum safety factor is equal to 1.5. In conclusion Tamiang weir is stable, secure against overturning and sliding
    • …
    corecore