83 research outputs found

    Polarized Line Formation in Multi-Dimensional Media.III. Hanle Effect with Partial Frequency Redistribution

    Full text link
    In the previous two papers, namely, \citet{anuknn11} and \citet{anuetal11} we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries, with partial frequency redistribution (PRD) as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I,U/IQ/I, U/I) in both these papers. In this paper we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors TQK\mathcal{T}^K_Q, developed in \citet{anuknn11}, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed in \citet{anuetal11}, is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) A comparison of emergent (I,Q/I,U/I)(I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I,U/I)(Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I,U/I)(Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.Comment: 31 pages, 14 figures, Submitted to ApJ, Under revie

    On the Sensitivity of Partial Redistribution Scattering Polarization Profiles to Various Atmospheric Parameters

    Full text link
    This paper presents a detailed study of the scattering polarization profiles formed under partial frequency redistribution (PRD) in two thermal models of the solar atmosphere. Particular attention is given to understanding the influence of several atmospheric parameters on the emergent fractional linear polarization profiles. The shapes of these Q/IQ/I profiles are interpreted in terms of the anisotropy of the radiation field, which in turn depends on the source function gradient that sets the angular variation of the specific intensity. We define a suitable frequency integrated anisotropy factor for PRD that can be directly related to the emergent linear polarization. We show that complete frequency redistribution is a good approximation to model weak resonance lines. We also show that the emergent linear polarization profiles can be very sensitive to the thermal structure of the solar atmosphere and, in particular, to spatial variations of the damping parameter.Comment: 45 pages, 16 figures, accepted for publication in the Astrophysical Journal (2010

    Hanle effect in the solar Ba II D2 line: a diagnostic tool for chromospheric weak magnetic fields

    Full text link
    The physics of the solar chromosphere depends in a crucial way on its magnetic structure. However there are presently very few direct magnetic field diagnostics available for this region. Here we investigate the diagnostic potential of the Hanle effect on the Ba II D2 line resonance polarization for the determination of weak chromospheric turbulent magnetic fields......Comment: In press in astronomy and astrophysic

    Hanle effect in the CN violet system with LTE modeling

    Full text link
    Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN B2ΣX2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN B2ΣX2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic

    Determining the Magnetization of the Quiet Sun Photosphere from the Hanle Effect and Surface Dynamo Simulations

    Full text link
    The bulk of the quiet solar photosphere is thought to be significantly magnetized, due to the ubiquitous presence of a tangled magnetic field at subresolution scales with an average strength ~ 100 G. This conclusion was reached through detailed three-dimensional (3D) radiative transfer modeling of the Hanle effect in the Sr I 4607 line, using the microturbulent field approximation and assuming that the shape of the probability density function of the magnetic field strength is exponential. Here we relax both approximations by modeling the observed scattering polarization in terms of the Hanle effect produced by the magnetic field of a 3D photospheric model resulting from a (state-of-the-art) magneto-convection simulation with surface dynamo action. We show that the scattering polarization amplitudes observed in the Sr I 4607 line can be explained only after enhancing the magnetic strength of the photospheric model by a sizable scaling factor, F=10, which implies = 130 G in the upper photosphere. We argue also that in order to explain both the Hanle depolarization of the Sr I 4607 line and the Zeeman signals observed in Fe I lines we need to introduce a height-dependent scaling factor, such that the ensuing = 160 G in the low photosphere and = 130 G in the upper photosphere.Comment: To appear in ApJ Letter

    Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line

    Full text link
    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or non-magnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution with coherent scattering in magnetic fields. To model the wing polarization we apply an extended version of the technique based on the "last scattering approximation". This model is highly successful in reproducing the observed Stokes Q/IQ/I polarization (linear polarization parallel to the nearest solar limb), including the location of the wing polarization maxima and the minima around the Doppler core, but it fails to reproduce the observed spatial variations of the wing polarization in terms of magnetic field effects with frequency redistribution. This null result points in the direction of a non-magnetic origin in terms of local inhomogeneities (varying collisional depolarization, radiation-field anisotropies, and deviations from a plane-parallel atmospheric stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa

    Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure

    Full text link
    The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS) and, they respond to hG magnetic field strengths differently from the lines used in solar magnetometry. This peculiarity has been employed to measure magnetic field strengths in quiet Sun regions. However, the methods applied so far assume the magnetic field to be constant in the resolution element. The assumption is clearly insufficient to describe the complex quiet Sun magnetic fields, biasing the results of the measurements. We present the first syntheses of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how the MnI lines weaken with increasing field strength. In particular, kG magnetic concentrations produce NnI 5538 circular polarization signals (Stokes V) which can be up to two orders of magnitude smaller than the weak magnetic field approximation prediction. Consequently, (1) the polarization emerging from an atmosphere having weak and strong fields is biased towards the weak fields, and (2) HFS features characteristic of weak fields show up even when the magnetic flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to disappear the filling factor of kG fields has to be larger than the filling factor of sub-kG fields. Stokes V depends on magnetic field inclination according to the simple consine law. Atmospheres with unresolved velocities produce asymmetric line profiles, which cannot be reproduced by simple one-component model atmospheres. The uncertainty of the HFS constants do not limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure

    The distribution of Quiet Sun magnetic field strengths from 0 to 1800 G

    Full text link
    The quiet Sun photospheric plasma has a variety of magnetic field strengths going from zero to 1800 G. The empirical characterization of these field strengths requires a probability density function (PDF), i.e., a function P(B) describing the fraction of quiet Sun occupied by each field strength B. We show how to combine magnetic field strength measurements based on the Zeeman effect and the Hanle effect to estimate an unbiased P(B). The application of the method to real observations renders a set of possible PDFs, which outline the general characteristics of the quiet Sun magnetic fields. Their most probable field strength differs from zero. The magnetic energy density is a significant fraction of the kinetic energy of the granular motions at the base of the photosphere (larger than 15% or larger than 2 10^{3} erg cm^{-3}). The unsigned flux density (or mean magnetic field strength) has to be between 130 G and 190 G. A significant part of the unsigned flux (between 10% and 50%) and of the magnetic energy (between 45% and 85%) are provided by the field strengths larger than 500 G which, however, occupy only a small fraction of the surface (between 1% and 10%). The fraction of kG fields in the quiet Sun is even smaller, but they are important for a number of reasons. The kG fields still trace a significant fraction of the total magnetic energy, they reach the high photosphere, and they appear in unpolarized light images. The quiet Sun photosphere has far more unsigned magnetic flux and magnetic energy than the active regions and the network all together.Comment: To appear in ApJ. 14 pages, 9 figure

    The Hanle Effect in 1D, 2D and 3D

    Full text link
    This paper addresses the problem of scattering line polarization and the Hanle effect in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) media for the case of a two-level model atom without lower-level polarization and assuming complete frequency redistribution. The theoretical framework chosen for its formulation is the QED theory of Landi Degl'Innocenti (1983), which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. The self-consistent values of these density-matrix elements is to be determined by solving jointly the kinetic and radiative transfer equations for the Stokes parameters. We show how to achieve this by generalizing to Non-LTE polarization transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho (1995). These methods essentially maintain the simplicity of the Lambda-iteration method, but their convergence rate is extremely high. Finally, some 1D and 2D model calculations are presented that illustrate the effect of horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance line polarization signals.Comment: 14 pages and 5 figure

    Wavelength-Diverse Polarization Modulators for Stokes Polarimetry

    Full text link
    Information about the three-dimensional structure of solar magnetic fields is encoded in the polarized spectra of solar radiation by a host of physical processes. To extract this information, solar spectra must be obtained in a variety of magnetically sensitive spectral lines at high spatial, spectral, and temporal resolution with high precision. The need to observe many different spectral lines drives the development of Stokes polarimeters with a high degree of wavelength diversity. We present a new paradigm for the design of polarization modulators that operate over a wide wavelength range with near optimal polarimetric efficiency and are directly applicable to the next generation of multi-line Stokes polarimeters. These modulators are not achromatic in the usual sense because their polarimetric properties vary with wavelength, but they do so in an optimal way. Thus we refer to these modulators as polychromatic. We present here the theory behind polychromatic modulators, illustrate the concept with design examples, and present the performance properties of a prototype polychromatic modulator.Comment: 13 pages, 1 table, 5 figures, accepted for publication in Applied Optic
    corecore