16 research outputs found

    Water Availability and Subsidence in California's Central Valley

    Get PDF
    doi: http://dx.doi.org/10.15447/sfews.v13iss3art4&lt;Abstracts are not associated with Essays. -The Editors of SFEWS.&gt;</p

    Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    Get PDF
    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley

    Comment on ‘‘\u3ci\u3eAn unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor\u3c/i\u3e’’ by R.W.H. Carroll, G.M. Pohll and R.L. Hershey [\u3ci\u3eJournal of Hydrology\u3c/i\u3e 373/3–4, pp. 316–328]

    Get PDF
    Carroll et al. (2009) state that the United States Geological Survey (USGS) Death Valley Regional Flow System (DVRFS) model, which is based on MODFLOW, is ‘‘conceptually inaccurate in that it models an unconfined aquifer as a confined system and does not simulate unconfined drawdown in transient pumping simulations.’’ Carroll et al. (2009) claim that ‘‘more realistic estimates of water availability’’ can be produced by a SURFACT-based model of the DVRFS that simulates unconfined groundwater flow and limits withdrawals from wells to avoid excessive drawdown. Differences in results from the original MODFLOW- based model and the SURFACT-based model stem primarily from application by Carroll et al. (2009) of head limits that can also be applied using the existing MODLOW model and not from any substantial difference in the accuracy with which the unconfined aquifer is represented in the two models. In a hypothetical 50-year predictive simulation presented by Carroll et al. (2009), large differences between the models are shown when simulating pumping from the lower clastic confining unit, where the transmissivity is nearly two orders of magnitude less than in an alluvial aquifer. Yet even for this extreme example, drawdowns and pumping rates from the MODFLOW and SURFACT models are similar when the head-limit capabilities of the MODFLOW MNW Package are applied. These similarities persist despite possible discrepancies between assigned hydraulic properties. The resulting comparison between the MODFLOW and SURFACT models of the DVRFS suggests that approximating the unconfined system in the DVRFS as a constant-saturated-thickness system (called a ‘‘confined system’’ by Carroll et al., 2009) performs very well

    Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    No full text
    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ∼44 km ^3 in the Central Valley and by ∼100 km ^3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km ^3 yr ^−1 , CU) or is used to recharge groundwater (MAR, ≤1.5 km ^3 yr ^−1 ) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0–1.6 km ^3 yr ^−1 , 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets
    corecore