659 research outputs found

    A test of motion-sensitive cameras to index ungulate densities: group size matters

    Get PDF
    The use of species detection rates gathered from motion-sensitive cameras as relative abundance indices (RAIs) could be a cost-effective tool to monitor wildlife populations; however, validations based on comparisons with reference methods are necessary. We considered 3 ungulates, wild boar (Sus scrofa), roe deer (Capreolus capreolus), and fallow deer (Dama dama), and compared 2 different RAIs with independent indices of density obtained through feces counts across 3 summers (2019-2021) in a protected area of central Italy. We estimated the number of detections per day (RAI(events)), and the number of individuals per day (RAI(individuals)) from remote camera videos. Both indices were correlated with density estimates, yet only RAI(individuals) correctly ranked interspecific densities. Values of RAI(events) for the most abundant and gregarious ungulate (i.e., wild boar) were biased low and were lower than those of fallow deer. The uncertainty of RAIs was acceptable for the 2 most abundant study species (CVs <= 25%) but was greater for roe deer. At the intra-specific level, density estimates and RAIs showed comparable but slight inter-annual variation. Our results support the use of RAIs derived from motion-sensitive cameras as a promising and cost-effective tool to monitor ungulate populations, and researchers should incorporate group size into monitoring. We advocate the necessity of field tests based on comparison with locally reliable reference methods to validate the use of motion-sensitive cameras

    Fine-scale fern ecological responses inform on riparian forest habitat conservation status

    Get PDF
    The recognition of the ecological quality of ecosystems and habitats therein is increasingly important in the Anthropocene. However, there are still scarcely explored ways of how and what to assess to obtain a sound ecological status of habitats. Ferns are an understudied plant group, especially given their usefulness as ecological indicators. Disentangling biotic and abiotic factors that drive fine-scale fern distribution could provide insight into the quality of their habitats. We investigated the environmental factors affecting the distribution of different largely distributed fern species in Europe. We studied their presence and abundance at different life stages in a forest habitat of European priority conservation concern. Our aim was to understand whether fern species can be used as an ecological indicator group in riparian alderwood habitat. We sampled 120 plots of 50 m(2) in randomly selected transects along streams of a riparian forest habitat characterized by the presence of many fern species in the understory, controlling for the effects of geology and elevation. Within each plot, fern species were recorded, including vegetative and generative stages of each ramet (rosette of fronds). We modelled fern occurrence and abundance for the different fern life stages, and diversity indices of the fern community in relation to environmental predictors. We found that population- and community-level responses of ferns mainly depended on soil granulometry and, to a lesser extent, moss cover and stream orientation. We also found that the generative life stage compared to the vegetative adult stage benefits from different ecological characteristics for certain fern species. Alterations of the natural hydrology might lead to a general deterioration in habitat quality for ferns. We suggest that some fern species acting as early-warning species, and potentially their life stages, can be used as an ecological quality indicator for riparian forest habitats. This study deepened the understanding of the fine-scale ecology of an array of European ferns in riparian forests and provides valuable information to assist in the conservation of fern species and their populations

    Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis

    Get PDF
    Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species

    Interactions between carnivore species: limited spatiotemporal partitioning between apex predator and smaller carnivores in a Mediterranean protected area

    Get PDF
    Background: There is need of information on ecological interactions that keystone species such as apex predators establish in ecosystems recently recolonised. Interactions among carnivore species have the potential to influence community-level processes, with consequences for ecosystem dynamics. Although avoidance of apex predators by smaller carnivores has been reported, there is increasing evidence that the potential for competitive-to-facilitative interactions is context-dependent. In a protected area recently recolonised by the wolf Canis lupus and hosting abundant wild prey (3 ungulate species, 20–30 individuals/km2, together), we used 5-year food habit analyses and 3-year camera trapping to (i) investigate the role of mesocarnivores (4 species) in the wolf diet; (ii) test for temporal, spatial, and fine-scale spatiotemporal association between mesocarnivores and the wolf. Results: Wolf diet was dominated by large herbivores (86% occurrences, N = 2201 scats), with mesocarnivores occurring in 2% scats. We collected 12,808 carnivore detections over > 19,000 camera trapping days. We found substantial (i.e., generally ≥ 0.75, 0–1 scale) temporal overlap between mesocarnivores—in particular red fox—and the wolf, with no support for negative temporal or spatial associations between mesocarnivore and wolf detection rates. All the species were nocturnal/crepuscular and results suggested a minor role of human activity in modifying interspecific spatiotemporal partitioning. Conclusions: Results suggest that the local great availability of large prey to wolves limited negative interactions towards smaller carnivores, thus reducing the potential for spatiotemporal avoidance. Our study emphasises that avoidance patterns leading to substantial spatiotemporal partitioning are not ubiquitous in carnivore guilds

    Eco-evolutionary drivers of avian migratory connectivity

    Get PDF
    Migratory connectivity, reflecting the extent by which migrants tend to maintain their reciprocal positions in seasonal ranges, can assist in the conservation and management of mobile species, yet relevant drivers remain unclear. Taking advantage of an exceptionally large (similar to 150,000 individuals, 83 species) and more-than-a-century-long dataset of bird ringing encounters, we investigated eco-evolutionary drivers of migratory connectivity in both short- and long-distance Afro-Palearctic migratory birds. Connectivity was strongly associated with geographical proxies of migration costs and was weakly influenced by biological traits and phylogeny, suggesting the evolutionary lability of migratory behaviour. The large intraspecific variability in avian migration strategies, through which most species geographically split into distinct migratory populations, explained why most of them were significantly connected. By unravelling key determinants of migratory connectivity, our study improves knowledge about the resilience of avian migrants to ecological perturbations, providing a critical tool to inform transboundary conservation and management strategies at the population level

    Use of Cross-Taxon Congruence for Hotspot Identification at a Regional Scale

    Get PDF
    One of the most debated problems in conservation biology is the use of indicator (surrogate) taxa to predict spatial patterns in other taxa. Cross-taxon congruence in species richness patterns is of paramount importance at regional scales to disclose areas of high conservation value that are significant in a broader biogeographical context but yet placed in the finer, more practical, political context of decision making. We analysed spatial patterns of diversity in six arthropod taxa from the Turkish fauna as a regional case study relevant to global conservation of the Mediterranean basin. Although we found high congruence in cross-taxon comparisons of species richness (0.241<r<0.645), hotspots of different groups show limited overlap, generally less than 50 per cent. The ability of a given taxon to capture diversity of other taxa was usually modest (on average, 50 percent of diversity of non-target taxa), limiting the use of hotspots for effective conservation of non-target groups. Nevertheless, our study demonstrates that a given group may partially stand in for another with similar ecological needs and biogeographical histories. We therefore advocate the use of multiple sets of taxa, chosen so as to be representative of animals with different ecological needs and biogeographical histories

    Erythrocytes nuclear abnormalities and leukocyte profile of the immune system of Adélie penguins (Pygoscelis adeliae) breeding at Edmonson Point, Ross Sea, Antarctica

    Get PDF
    Antarctic seabirds well adapted to extreme environments often deal during their life cycle with sub-optimal conditions and occasionally with severe environmental stress. Climate changes, pollution, habitat loss, increasing human presence can all significantly affect organism's health status from molecular to individual up to population level. In the present study, erythrocyte nuclear abnormalities (ENAs) and white blood cells (WBCs) differential were investigated in 19 adults of Adelie penguin (Pygoscelisadeliae) breeding at Edmonson Point, Antarctic Specially Protected Area (ASPA n. 165) in the Ross Sea. Micronuclei (MN) accounted for 10.50% of observed abnormalities in penguin erythrocytes while kidney-shaped nucleus (KSN) was the most abundant (20.88%). Heterophils (HE) were the most common WBC (36.93%) in agreement with the generic avian leukocytes profile while eosinophils (EO) were the lowest (7.45%). A low number of lymphocytes were detected resulting in a higher heterophils to lymphocytes ratio. ENAs and H:L ratio are confirmed as reliable indexes of penguin's health status since they reflect their individual adaptation during breeding season. These baseline data will be useful for future studies as indicators of penguin's health status mainly as response to environmental changes

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era

    Get PDF
    Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era

    Changes in Dry State Hemoglobin over Time Do Not Increase the Potential for Oxidative DNA Damage in Dried Blood

    Get PDF
    BACKGROUND: Hemoglobin (Hb) is the iron-containing oxygen transport protein present in the red blood cells of vertebrates. Ancient DNA and forensic scientists are particularly interested in Hb reactions in the dry state because both regularly encounter aged, dried bloodstains. The DNA in such stains may be oxidatively damaged and, in theory, may be deteriorated by the presence of Hb. To understand the nature of the oxidative systems potentially available to degrade DNA in the presence of dried Hb, we need to determine what molecular species Hb forms over time. These species will determine what type of iron (i.e. Fe(2+)/Fe(3+)/Fe(4+)) is available to participate in further chemical reactions. The availability of "free" iron will affect the ability of the system to undergo Fenton-type reactions which generate the highly reactive hydroxyl radical (OH*). The OH* can directly damage DNA. METHODOLOGY/PRINCIPAL FINDINGS: Oxygenated Hb (oxyHb) converts over time to oxidized Hb (metHb), but this happens more quickly in the dry state than in the hydrated state, as shown by monitoring stabilized oxyHb. In addition, dry state oxyHb converts into at least one other unknown species other than metHb. Although "free" iron was detectable as both Fe(2+) and Fe(3+) in dry and hydrated oxyHb and metHb, the amount of ions detected did not increase over time. There was no evidence that Hb becomes more prone to generating OH* as it ages in either the hydrated or dry states. CONCLUSIONS: The Hb molecule in the dried state undergoes oxidative changes and releases reactive Fe(II) cations. These changes, however, do not appear to increase the ability of Hb to act as a more aggressive Fenton reagent over time. Nevertheless, the presence of Hb in the vicinity of DNA in dried bloodstains creates the opportunity for OH*-induced oxidative damage to the deoxyribose sugar and the DNA nucleobases
    corecore