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Abstract 26 

Antarctic seabirds well adapted to extreme environments often deal during their life cycle with sub-optimal 27 

conditions and occasionally with severe environmental stress. Climate changes, pollution, habitat loss, 28 

increasing human presence can all significantly affect organism’s health status from molecular to individual 29 

up to population level. In the present study, erythrocytes nuclear abnormalities (ENAs) and white blood cells 30 

(WBC) differential were investigated in 19 adults of Adélie penguin (Pygoscelis adeliae) breeding at 31 

Edmonson Point, Antarctic Specially Protected Area (ASPA n. 165) in the Ross Sea. Micronuclei (MN) 32 

accounted for 10.50% of observed abnormalities in penguin erythrocytes while kidney-shaped nucleus 33 

(KSN) was the most abundant (20.88%). Heterophils (HE) were the most common WBC (36.93%) in 34 

agreement with the generic avian leukocytes profile while eosinophils (EO) were the lowest (7.45%). A low 35 

number of lymphocytes were detected resulting in a higher heterophils to lymphocytes ratio. ENAs and H:L 36 

ratio are confirmed as reliable indexes of penguin’s health status since they reflect their individual adaptation 37 

during breeding season. These baseline data will be useful for future studies as indicators of penguin’s health 38 

status mainly as response to environmental changes. 39 

 40 
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Introduction 47 

Organisms rarely experience optimal state in their natural habitat but for the most of their life they deal with 48 

variable conditions and occasionally with severe environmental stress. A variety of intrinsic factors can 49 

influence organism’s physiological stress response such as reproductive status, age, sex, developmental 50 

or/and recent experiences. Whatever the source, physiological stress is a relevant parameter to consider when 51 

assessing animal welfare in both captive and wild populations (Davis et al. 2008). 52 

Blood cells counts and classification, in particular erythrocytes’ nuclear abnormalities (ENAs) and white 53 

blood cells (WBC), are considered efficient tools for assessing genomic instability and immune status in 54 

wildlife (Kursa and Bezrukov 2008). Although the mechanisms of the formation of ENAs are still little 55 

investigated in birds (Clark 2015), Van Ngan et al. (2007) promote the use of ENAs count for detecting 56 

genomic damage caused by prolonged exposure to several physico-chemical stressors during organism’s 57 

lifespan. According to Kursa and Bezrukov (2008), occurrence of both micronucleus (MN) and in general 58 

nuclear abnormalities (NA) should be considered useful tools for assessing genome instability also in 59 

Antarctic birds since they represent a cellular reaction to natural and environmental stressors. MN occurrence 60 

may document what happen during erythrocytes’ lifetime thus reflecting possible chronic effects. 61 

Furthermore, the white blood cell count (WBC) reflects animal’s immune status and response to stressful 62 

conditions. The use of blood smears for detection of ENAs and WBC have several advantages such as low 63 

amount of blood needed with consequent low impact on animal health and a quick sampling procedure 64 

which can be readily used also in extreme environmental conditions as for instance with polar birds (Dantzer 65 

et al. 2014). Heterophils/ lymphocytes ratio (H:L) is considered a suitable indicator of organism’s stress 66 

associated to reproductive cycle, seasonal changes, injury and also to pathogens and parasites (Dufva and 67 

Allander 1995; Krams et al 2012). Moreover, it reflects food and water deprivation, extremes temperature, 68 

constant light, long-distance migration and social disruption too. All these stressors result in an increased 69 

level of heterophils (innate immune system), decreased number of lymphocytes (acquired immune system) 70 

and a high H:L ratio (Vleck et al, 2000).  71 

Commonly, birds exhibit low level of spontaneous blood cell anomalies such MN, therefore it might be 72 

rather easy to detect any alteration due genotoxicants exposure or other environmental stressors (Zúñiga-73 

González et al. 2000, 2001). 74 

Antarctic seabirds feed over wide geographical areas at different trophic level and therefore they are studied 75 

to monitor health conditions across large aquatic ecosystems and at different trophic levels. In turn they are 76 

able to reflect both natural and anthropogenic stressors (Mallory et al. 2010). Their health and physiological 77 

tolerance to stressors is closely influenced by their adaptation capability necessary to survive in their natural 78 

environment. 79 

ENAs and immune status have been investigated in seabirds and in pygoscelid species breeding in the Sub-80 

Antarctic and Antarctic Peninsula (Vleck et al. 2000; Kursa and Bezrukov 2008; D’Amico et al. 2014; De 81 

Mas et al. 2015; Barbosa 2013). ENA and immune status have been linked to contaminants exposure 82 

augmenting stress on penguin populations (D’Amico et al. 2014; Colominas-Ciuró et al. 2017) but also to 83 
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different stages of the breeding cycle, sex and individual condition and activities (Vleck et al. 2000; Moreno 84 

et al. 1998).  85 

It is well known that climate changes are affecting the bioavailability of toxic contaminants in the wildlife 86 

altering the toxicokinetics due to an increase in temperature and salinity and leading to changes in organism’ 87 

homeostasis and other physiological defence mechanisms (Noyes et al. 2009). Thus, during penguin’s 88 

lifetime, contaminants exposure may vary according to the ecosystem changes. Different diets and foraging 89 

areas have been recognized also as major drivers for genome instability of penguin species from Antarctic 90 

Peninsula (De Mas et al. 2015).  91 

In the background of above information, the present study investigates for the first time the occurrence of 92 

ENAs and WBCs in blood cells of an Adélie penguin (Pygoscelis adeliae, Hombron and Jacquinot 1841) 93 

population breeding at Edmonson Point, an Antarctic Specially Protected Area (ASPA n. 165) localized in 94 

the Ross Sea. The Adélie penguin is considered a keystone species of the Antarctic environment and 95 

currently most affected by environmental changes such as sea ice extent anomalies in different Antarctic 96 

regions (Ainley 2002; Olmastroni et al. 2004; Emmerson and Southwell 2008; Ropert-Coudert et al. 2013; 97 

Ducklow et al. 2013; Ballerini et al. 2009, 2015; Cimino et al. 2016). 98 

In comparison with other Antarctic territories as for instance Antarctic Peninsula, the Ross Sea is still 99 

considered a pristine area (Halpern, 2008) and recently partially included in a Marine Protected Area (SC-100 

CAMLR, 2016) to be preserved from increasing human activities. On the other hand, human pressure has 101 

increased significantly in the last twenty years mainly due to increase in fishing, tourism and number of 102 

scientific bases (De Mas et al. 2015; Tin et al. 2009). Scientific research communities strongly required 103 

protection for Antarctica from which the designation of the Ross Sea’ MPA with the aim to preserve the 104 

marine ecosystem and biodiversity, as well as to limit and regulate current and future human impact. The 105 

Ross Sea is the home of 38% of the global population of Adélie penguin, therefore it is mandatory to address 106 

the current health status of population living in this territory in order to prove the efficacy of the MPA and to 107 

monitor any potential impact in the future. While ecology of Adélie penguin breeding at the Edmonson Point 108 

colony has been the focus of studies in the last 20 years (Olmastroni et al 2001, 2004; Pezzo et al 2007; 109 

Ballerini et al. 2009, 2015), genome and immune stability have not been investigated so far. This issue 110 

inspired our study on the occurrence of ENA and leukocyte profile of the immune system, with the aim to 111 

provide a baseline of health status of penguin living in the area. 112 

 113 

Materials and Methods  114 

Study area and samples collection 115 

The penguin colony is located at Edmonson Point (74 ° 20’ S, 165° 08’ E), Ross Sea, an ice-free area of 116 

about 6 km2 along the Eastern slopes of Mt. Melbourne and c. 50 Km NW from Mario Zucchelli Italian 117 

Research Station (Fig. 1). The area has been occupied by Adélie penguin (Pygoscelis adeliae) from almost 118 

3000 years BP (Baroni and Orombelli 1994) and breeding population size consisted of 3066 pairs in 2014/15 119 

summer season. Since 1994 Edmonson Point is a monitoring site to carry out scientific research on the 120 
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Adélie penguin’s ecology and to collect data for the Ecosystem Monitoring Program (CEMP) lead by 121 

CCAMLR Commission for the Conservation of Antarctic Marine Living Resources.  122 

All data were collected during 2014-15 austral summer, following protocols approved by SCAR (SCAR’s 123 

Code of Conduct for the Use of Animals for Scientific Purposes in Antarctica, 2011) and under permission 124 

from PNRA for working in an ASPA.  125 

All blood and feather samples (19) were collected from adult penguins at the beginning of the breeding 126 

season (incubation period) when mostly males occupy colony. Blood was collected from apparently healthy 127 

penguins (i.e. not showing any sign of illness or injuries). No ectoparasites, feather or skin changes or 128 

emaciation were observed. 129 

In order to reduce stress induced by capturing and handling each bird was restrained for the minimum time 130 

necessary (max 5 minutes) to carry out blood and feathers sampling and to record biometrics (Vleck et al. 131 

2000). After sampling each bird was then released in front of its nest and observed until it returned to regular 132 

breeding activity. Blood samples (one drop) were collected by venipuncture of the brachial vein using a 133 

heparinized syringe with sterilized needle (22 gauge) according to Owen (2011). Up to five feathers per 134 

individual were sampled from the chest area. Feathers were conserved in sealed plastic bags at -20°C. 135 

Penguins were weighted with a Salter scale to the nearest 50 g, and bill depth and bill length measured using 136 

a calliper. Blood smears were prepared in the field immediately after collection using a drop of blood on a 137 

clean slide (15 min 10% HCl and rinsed with MilliQ water and oven-drying at 100°C). Slides were then 138 

stored at +4°C in a slides’ box. 139 

 140 

Genome and immune analysis 141 

Slides were processed at the University of Plymouth Ecotoxicology Lab for the analysis of genome 142 

instability. The following procedure was used: slides were fixed using (100% v/v) cold methanol for 30 min, 143 

stained with 10% Giemsa stain modified solution (Giemsa buffer tablets, pH 6.4 – BDH), and DPX 144 

Mounting Media (Leica Biosystems). They were then observed under a light microscope equipped with 145 

Digital Microscope Leica DMD108 Digital Microimaging Device with 40x objective. The images were 146 

acquired, stored and processed by using LAS program (Leica Application Suite).  147 

Areas with a clear distribution of erythrocytes were identified for each slide as a well-defined and separate 148 

cytoplasm. Areas which presented overlapping cells were not taken into consideration.  149 

Cell counting was carried out by taking the reference coordinates x, y and progressively moving from the left 150 

to the right margin. Upon selecting the best images per slide, 1,000 erythrocytes were counted for each slide 151 

according to Clark (2015) and the number of leukocytes and thrombocytes localized between them recorded. 152 

A total amount of 19,000 cells was analysed. 153 

In order to increase the identification of all known abnormalities in the nucleus of the erythrocytes of avian 154 

species, in the present study blood cells of penguins were analysed according to the established method of 155 

Kursa and Bezrukov (2008) already used for pygoscelid species by D'Amico et al (2014) and De Mas et al. 156 

(2015). Erythrocytes nuclear abnormalities were determined as follows: (a) micronucleus, (b) lobed nucleus, 157 
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(c) tailed nucleus, (d) two-lobed nucleus, (e) budding nucleus, (f) nucleus with cavity, (g) kidney-shaped 158 

nucleus, (h) unknown nuclear malformation. Their sum as ENAs was also calculated. 159 

White blood cells were classified along the five types of leukocyte according to Samour (2006): (a) 160 

heterophils, (b) lymphocytes, (c) monocytes, (d) basophils, (e) eosinophils were identified based on 161 

morphologic and staining characteristics according to the Table 22.10 reported in the chapter by Samour 162 

(2006).  Erythrocytes and WBC were counted using ImageJ 1.6.0_24 (NIH, USA). 163 

Sex determination 164 

Sex of penguins (12 males and 7 females) was determined by molecular analysis on feathers except for one 165 

individual in which blood was used. DNA was extracted using the PureLinkTM DNA Mini Kit (Invitrogen, by 166 

Thermo Fisher Scientific), following the manufacturer’s instructions. The reliability of DNA extraction was 167 

monitored through a negative control (no tissue added), and the DNA content determined through an 168 

Eppendorf Ultraviolet Spectrophotometer (AG Eppendorf). The chromo-helicase-DNA-binding-1 gene 169 

(CHD1), found on sex chromosomes, was amplified which length varies among male (sex-chromosomes: 170 

ZZ) and female (ZW) penguins (Zhang et al. 2013). The following specific primers for penguins were used: 171 

PL (5’-CCC AAG GAT GAT AAA TTG TGC-3’) and PR (5’-CAC TTC CAT TAA AGC TGA TCT GG-172 

3’). PCR was run through a 2720 Thermal Cycler (Applied Biosystems), following this profile: 3 min 94°C, 173 

30 cycles of 35” at 94°C, 45” at 55°C and 3’ at 72°C, followed by 7 min at 72°C. PCR reactions were 174 

prepared with 0.5 µL of Taq Polymerase, 1 µL of each primer, 6 µL of PCR Master Mix (with PCR buffer, 175 

MgCl2 and dNTPs: Genaid Biotech Ltd.) and about 20 ng of each DNA template. The electrophoresis was 176 

run for 45’ on a 3% agarose gel (Zhang et al. 2013). 177 

Statistical analyses 178 

Descriptive statistical analyses including average, standard error (SE), range (minimum-maximum) of blood 179 

smear parameters were carried out with R Studio software (Version 0.99.902 – © 2009-2016 RStudio, Inc). 180 

Differences between sexes were determined through the nonparametric Monte Carlo exact permutation test 181 

for the equality of means, which computed all the possible permutations and uses the absolute difference in 182 

means as test statistic (Anderson 2001). The Monte Carlo exact permutation test assumes that the two 183 

samples are equal in distribution if the null hypothesis is true (Anderson 2001). Thus, we checked that each 184 

variable, both for male and female, followed the same distribution through a Kolmogorov-Smirnov test for 185 

equal distributions if the null hypothesis was true. Significance level was set at α = 0.05. Analyses were 186 

performed through the software Past (Hammer et al. 2001). 187 

 188 

Results 189 

Erythrocytes nuclear abnormalities in the penguin’s blood smears from Edmonson point colony are listed in 190 

Table 1. ENAs was found in 4.31 % over 19,000 mature erythrocytes analysed. Mean values of ENA varies 191 

from the lowest number of TLN (1.74 ± 0.40), which account for 4.03% of total ENAs to the highest of KSN 192 

(9.0 ± 1.14) accounting for 20.88% (Table 1).  193 

http://wsr.imagej.net/distros/win/ij150-win-jre6.zip


7 
 

Mean values of MN (4.53 ± 0.52) resulted similar to that found for lobed nucleus (LN) (4.79 ± 1.64) and 194 

budding nucleus (BN) (4.79 ± 0.95) and account for 10.5% of total ENAs (LN and BN 11.11 % 195 

respectively). 196 

Therefore, the most recurring ENA are KSN, NWC and TN, followed by LN, MN and BN. Amongst those, 197 

MN is the lowest abnormality occurring with ≤ 5 over 1,000 mature erythrocytes while NWC, TN, LN e 198 

KSN exhibited higher variability. In addition, a small percentage showed unknown nuclear malformation 199 

(UNM) (Table 1). The figure 2 shows all ENAs detected in Adélie penguin’s blood smears classified 200 

according to Kursa and Bezrukov (2008) and De Mas (2015).  201 

Table 2 summarizes WBC identified in Adélie penguin’s blood samples. White blood cells were 658 over 202 

19,000 cells scored in penguin's blood smears. Heterophils (HE) were the most common WBC, followed by 203 

lymphocytes (LY), basophils (BA), monocytes (MO) and eosinophils EO (Table 2 and shown in Fig. 2). 204 

Although not significant, toxic HE (THE) resulted higher than normal HE (NHE) in the total HE found (243 205 

over 19,000 erythrocytes scored). LY resulted lower than total HE (23.70% compared to 36.90%) while BA 206 

were 19.45% of the total WBC (Table 2 and Fig. 3). 207 

Total MO resulted 12.46% of the total leukocytes over 19,000 cells scored. Mean TMO numbers resulted 208 

higher than NMO even though not significantly different. The lowest WBC (Fig. 3) detected were EO 209 

(7.45%). Heterophil: Lymphocyte ratio (H:L) was calculated and the mean value was 3.08 ± 0.87. 210 

The number of HE (Monte Carlo exact permutation test: p = 0.016) and the number of NHE (Monte Carlo 211 

exact permutation test: p = 0.012) were approximately four times greater in males (n = 12) than in females (n 212 

= 7) (Fig. 4), the rest of parameters analysed showed not gender differences. 213 

214 
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Discussion  215 

The present study investigates for the first time the occurrence of ENAs and WBCs in blood cells of Adélie 216 

penguin (Pygoscelis adeliae, Hombron and Jacquinot 1841) breeding at Edmonson Point, an Antarctic 217 

Specially Protected Area (ASPA n. 165) localized in the Ross Sea. 218 

The most frequent ENAs described for bird populations including penguins have been observed in blood 219 

smears of Adélies from Edmonson Point (Kursa and Bezrukov 2008 and De Mas 2015); in particular 220 

peculiar nuclear anomalies as TN, KSN and TL were observed (Lucas and Jamroz, 1961) as well as BN and 221 

LN which are considered in interphase as precursors of MN formation and associated to cell death, genomic 222 

instability, or cancer development (Webster et al. 2009).  223 

MN frequency is also in the range of natural values reported for birds (from 0.40 to 4.30 over 1000 224 

erythrocytes scored) (Zúñiga-González et al. 2001), thus suggesting a low genome instability of individual 225 

nesting at the Edmonson Point colony.  226 

The analysis of immune parameters also reveals that total number of WBC are within the normal range 227 

reported for birds (Kursa and Bezrukov 2008). By comparing ENAs and H:L ratio observed in Adélies from 228 

Edmonson Point with those documented in penguins breeding in Antarctic Peninsula (i.e. more 229 

anthropogenically impacted: Tin et al. 2009; SCAR 2010), some considerations can be made.  230 

ENA values result similar to those reported by De Mas et al. (2015) in Adélie penguin from Torgensen and 231 

Avian Islands (43.11 ± 27.59; 46.90 ± 46.50; 41.20 ± 40.10 respectively) whereas those of penguins from 232 

Yalour and King George Island result far higher (109.90 ± 80 and 72 ± 35.3). Lower values are on the 233 

contrary reported by D’Amico et al. (2014) in penguins from Potter Peninsula at Stranger Point (26.20 ± 234 

3.20) scoring 40,000 mature erythrocytes out of 20 individuals. 235 

MN values (4.53 ± 0.52) are similar to the range reported in penguins breeding in colonies located in the 236 

Antarctic Peninsula (Yalour Island, 5.2 ± 4.1; Avian Island, 3.25 ± 3.7) but higher than those recorded in 237 

penguins from Torgensen Island (1.3 ± 1.5) and King George (1.9 ± 1.4) (De Mas et al. 2015).  238 

Interspecific comparison among Pygoscelis genus, shows lower MN values in individuals of Pygoscelis 239 

papua (Gentoo penguin) and Pygoscelis antarcticus (Chinstrap penguin) (De Mas et al. 2015 and reference 240 

within) compared to Adélies from Edmonson Point (this study).  241 

Several ecological and environmental factors, such as species-specific sensitivity, diet, wintering areas and 242 

exposure to toxic pollutants, could affect penguin's genome and immune stability (Bargagli 2005; Barbosa et 243 

al. 2013; De Mas et al. 2015). According to De Mas et al. (2015), a different sensitivity to environmental 244 

disturbance of Gentoo and Chinstrap penguins compared to the strictly sea ice dependent Adélie penguin, 245 

might have resulted in the development of a physiological defence mechanism able to cope better with 246 

genotoxic agents. In addition, it has been hypothesized that some of the observed differences among species 247 

could be related to the diet spectrum, which is wider in Gentoo penguins compared to Adélies (D’Amico et 248 

al. 2016). D’Amico et al. (2016) address also anthropic sources as responsible of observed ENAs recorded in 249 

Adélie penguins from Stranger Point where high levels of heavy metals (Ni, Cu, Zn ad Se) have been 250 

detected in their feathers. Ancora et al. (2002) reported heavy metals (Cd, Pb and Hg) in stomach contents, 251 
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excreta, and feathers of Adélie penguins breeding at Edmonson Point. At that time a natural occurrence has 252 

been hypothesized for Cd and, to a lesser extent, for Hg, but not a direct anthropogenic impact of local 253 

sources. In fact the nearest scientific stations are far (c. 50 Km) from the Edmonson Point colony.  254 

Concerning other source of anthropic pollution, contaminants stored in pack ice during years (via global 255 

distillation process), could be released as a result of the seasonal melting also amplified by increasing 256 

temperatures of surface waters as a consequence of climate changes (SCAR 2010). For instance, Persistent 257 

Organic Pollutants (POPs) have been documented to cause alteration on immune system (Jara et al. 2018) 258 

and to correlate with alterations in ENAs and WBC in penguin’s species (Jara-Carrasco et al. 2015). In 259 

Adélie penguin population breeding at Edmonson Point, legacy POPs have been reported in stomach 260 

contents, blood samples and unhatched eggs by Corsolini et al. (2003, 2011, 2017), but overall toxicity was 261 

estimated to be low compared to other Antarctic areas. Emerging contaminants like PBDEs (Corsolini et al. 262 

2017) and PFAS (Ademollo, unpublished data) were also detected in Adélie penguin blood samples and eggs 263 

from Edmonson Point. Therefore exposure to contaminant in penguins breeding at Edmonson Point cannot 264 

be considered negligible; Antarctic penguin’s colonies are also considered a secondary source of POPs 265 

(Roosens et al. 2007). Nonetheless the impact of human activities that determines local inputs need further 266 

investigations (Wang et al. 2017). A small seasonal field camp (average of 2 personnel unit) located 600 m 267 

far from the breeding groups represents so far the only local source of contamination at Edmonson Point 268 

(Olmastroni 2002). 269 

As far as immune status parameters, mean H:L value results higher compared to those reported by D’Amico 270 

et al. (2014; 2016) in Adélie penguin from Stranger Point (1.10 ± 0.20 and 1.07 ± 0.11 respectively). In 271 

particular, the percentages of LY, HE and EO result lower than those reported by D’Amico et al. (2014) 272 

while MO and BA are 37% higher. MO and EO can be used to make a distinction among factors that alter 273 

the leukocyte profile: stress, disease and infection. In fact, MO number increases in case of infections and 274 

diseases since their main role is to phagocyte foreign particles. On the opposite, a reduction in EO number is 275 

commonly a measure of stress reaction and rarely a response to disease. Early studies in human and 276 

mammals confirmed that glucocorticoids induced by stress often carry out a reduction on EO numbers 277 

(Davis et al. 2008 and references within). THE were also detected and described by Jara-Carrasco et al. 278 

(2015) as a cytological alteration consequent to exposure to various stress agents. THE in Adélie penguins 279 

accounted to 53.50% of total HE and may suggest a bird’s response to stress. The presence of THE 280 

associated with the abnormal high number of BA identified in Adélie penguin’s blood smears may indicate 281 

some disease occurring in the population under study. Mild lymphocytosis and moderate basophilia have 282 

been associated with feather loss in penguins population from the Ross Sea (Grimaldi et al., 2014) which has 283 

been lately observed also in individuals from Edmonson Point in a similar percentage of occurrence 284 

(Olmastroni personal. observation, 2018-19 Antarctic expedition).  285 

Concerning WBC, higher values are reported by D’Amico et al. (2016) in Adélie penguin from different 286 

Islands around Antarctic Peninsula. However, among them, similar values as those measured in our study 287 
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were reported in Adélie penguins from Stranger Point in which in a comparable number of individuals was 288 

analysed (n = 20). HE shows the highest percentage and this type of WBC are phagocytic cells that increase 289 

when the organism needs to cope with infections causing an increase in the level of H:L ratio. For instance, 290 

HE are the first line of defence that an organism uses as immune response against gastrointestinal parasites 291 

incorporated through the diet (D’Amico et al. 2016). An organism affected by heterophilia and lymphopenia 292 

presents the same leukocyte profiles as one who is experiencing infection and/or diseases. In addition, 293 

despite anthropogenic pressure may have a strong influence on H:L ratio, this factor might have had less 294 

influence in penguins monitored in the present study since penguins from Edmonson Point colony seem less 295 

affected by organic pollutants compared to other colonies (Schiavone et al. 2009).  296 

Although difficult at this stage to connect to any contamination or stress sources, this information will be 297 

helpful for future investigation for comparison with different seasons, colonies and breeding stages. In 298 

addition, some aspects of the breeding ecology need to be considered for assessing the health status of the 299 

penguin population. During the breeding stage, females usually arrive later at the breeding colonies (Ainley 300 

2002), and fasting period and intraspecific competition are reduced if compared to mates. At the time of 301 

sampling adults were incubating eggs or attempting to breed, according to Edmonson Point breeding 302 

chronology (Olmastroni et al. 2000; Pezzo et al. 2007). Consequently males were fasting from their arrival at 303 

the breeding colony (late October) and underwent competition with conspecifics for territory occupation, 304 

nest building and mating. Thus, reproductive cycle, seasonal changes, fasting, long-distance migration, 305 

competition for resources and injuries can all affect health status e.g. H:L ratio (Moreno et al. 1998; Vleck et 306 

al. 2000; Minias 2019). Seasonal changes may influence organism’s stress levels forcing individuals to use 307 

more energy for thermoregulation. Vleck et al. (2000) reported that injured birds during fights for defending 308 

their territory and/or nest, exhibit higher H:L ratio level than healthy birds. In addition, pathogens, ecto and 309 

endoparasites are known to affect immune status. Individuals sampled in the present study were healthy 310 

penguins, as their weights ranged 3100-5650 g, no sign of illness or injuries, and no ectoparasites, feather or 311 

skin changes or emaciation were observed. There are no studies available on pathogens or parasites on 312 

Edmonson Point population. We cannot exclude potential influence of disease or parasites hampering health 313 

status in the studied population, but no evidence of blood pathogens was detected in the current study. In 314 

addition, studies on pygoscelids suggested absence of blood parasites and a low richness of ecto and 315 

endoparasites for wild sub-Antarctic and Antarctic species (Jones and Shellam1999; Diaz et al. 2016; 316 

Vanstreels et al. 2014, 2016).  317 

Environmental natural stressors and increasing anthropogenic impact on wildlife are expected to grow in 318 

Antarctica in the near future, potentially by altering individual’s level of stress and immune status. The 319 

present results depict a preliminary overall assessment of the health status of Adélie penguin’s colony at 320 

Edmonson Point since it reflects the different components of an organism’s response to its environment. 321 

ENAs and H:L ratio parameters represent a first baseline for future monitoring and assessment of genome 322 

and immune stability of Adélie penguin population in the mid Victoria Land area. Because high H:L ratio 323 

may represent a corticosterone-mediate response of organism to various exogenous stressors and an adaptive 324 
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evolutionary trait (Minias 2019) future investigation and sampling will be carried out in the framework of the 325 

ongoing research program PNRA2016 AZ1.11 (PenguinERA). Blood parameters such as estimations of 326 

ENAs, WBC and H:L could be useful physiological and ecological indicators in monitoring and conservation 327 

studies to assess population and ecosystem health in a changing environments. 328 
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 353 

Figure and table captions 354 

Fig. 1 Adélie penguin colony at Edmonson Point (74°20' S, 165°08' E), Victoria Land, Ross Sea. 355 

Fig. 2 Erythrocytes nuclear abnormalities (ENAs) in Adélie penguin blood samples according to Kursa and 356 
Bezrukov (2008): (a) micronucleus (MN), (b) lobed nucleus (LN), (c) tailed nucleus (TN), (d) two-lobed 357 
nucleus (TLN), (e) budding nucleus (BN), (f) nucleus with cavity (NWC), (g) kidney-shaped nucleus (KSN), 358 
(h) unknown nuclear malformation (UNM). 359 
 360 

Fig. 3 Differential white blood cells (WBC): (a) Heterophil (HE), (b) Toxic Heterophil (THE), (c) 361 
Lymphocyte (LY), (d) Monocyte (MO), (e) Toxic Monocyte (TMO), (f) Basophil (BA), (g) Eosinophil (EO). 362 
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Fig. 4 Mean ± standard error of n. of heterophils and n. of normal heterophils counted in males and females 363 

Adélie penguin (females: n = 7; males: n = 12) 364 

Table 1 Number of micronucleus (MN) and other erythrocytes nuclear anomalies (ENA) analysed per 365 

19,000 mature erythrocytes of Adélie penguin’s blood smears according to Kursa and Bezrukov (2008), and 366 

to De Mas (2015) 367 

Table 2 White blood cells (WBC) per 19,000 mature erythrocytes in Adélie penguin’s blood samples and H: 368 

L ratio 369 

370 
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