51 research outputs found

    Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer's disease biomarkers

    Get PDF
    To develop therapies for Alzheimer's disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer's disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition

    Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection

    Get PDF
    Advancement in proteomics methods for interrogating biological samples has helped identify disease biomarkers for early diagnostics and unravel underlying molecular mechanisms of disease. Herein, we examined the serum proteomes of 23 study participants presenting with one of two common arthropod-borne infections: Lyme disease (LD), an extracellular bacterial infection or West Nile virus infection (WNV), an intracellular viral infection. The LC/MS based serum proteomes of samples collected at the time of diagnosis and during convalescence were assessed using a depletion-based high-throughput shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-based low-throughput platform (MStern). The LC/MS integrated analyses identified host proteome responses in the acute and recovery phases shared by LD and WNV infections, as well as differentially abundant proteins that were unique to each infection. Notably, we also detected proteins that distinguished localized from disseminated LD and asymptomatic from symptomatic WNV infection. The proteins detected in both diseases with the dHSP pipeline identified unique and overlapping proteins detected with the non-depleting MStern platform, supporting the utility of both detection methods. Machine learning confirmed the use of the serum proteome to distinguish the infection from healthy control sera but could not develop discriminatory models between LD and WNV at current sample numbers. Our study is the first to compare the serum proteomes in two arthropod-borne infections and highlights the similarities in host responses even though the pathogens and the vectors themselves are different

    Determinants of B-Cell Compartment Hyperactivation in European Adolescents Living With Perinatally Acquired HIV-1 After Over 10 Years of Suppressive Therapy

    Get PDF
    Background: Despite a successful antiretroviral therapy (ART), adolescents living with perinatally acquired HIV (PHIV) experience signs of B-cell hyperactivation with expansion of 'namely' atypical B-cell phenotypes, including double negative (CD27-IgD-) and termed age associated (ABCs) B-cells (T-bet+CD11c+), which may result in reduced cell functionality, including loss of vaccine-induced immunological memory and higher risk of developing B-cells associated tumors. In this context, perinatally HIV infected children (PHIV) deserve particular attention, given their life-long exposure to chronic immune activation. Methods: We studied 40 PHIV who started treatment by the 2nd year of life and maintained virological suppression for 13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma (Spike). We applied a multi-disciplinary approach including immunological B and T cell phenotype, plasma proteomics analysis, and serum level of anti-measles antibodies as functional correlates of vaccine-induced immunity. Results: Phenotypic signs of B cell hyperactivation were elevated in subjects starting ART later (%DN T-bet+CD11c+ p=0.03; %AM T-bet+CD11c+ p=0.02) and were associated with detectable cell-associated HIV-1 RNA (%AM T-bet+CD11c+ p=0.0003) and transient elevation of the plasma viral load (spike). Furthermore, B-cell hyperactivation appeared to be present in individuals with higher frequency of exhausted T-cells, in particular: ĂŤ4 TIGIT+ were associated with %DN (p=0.008), %DN T-bet+CD11c+ (p=0.0002) and %AM T-bet+CD11c+ (p=0.002) and ĂŤ4 PD-1 were associated with %DN (p=0.048), %DN T-bet+CD11c+ (p=0.039) and %AM T-bet+CD11c+ (p=0.006). The proteomic analysis revealed that subjects with expansion of these atypical B-cells and exhausted T-cells had enrichment of proteins involved in immune inflammation and complement activation pathways. Furthermore, we observed that higher levels of ABCs were associated a reduced capacity to maintain vaccine-induced antibody immunity against measles (%B-cells CD19+CD10- T-bet+, p=0.035). Conclusion: We identified that the levels of hyperactivated B cell subsets were strongly affected by time of ART start and associated with clinical, viral, cellular and plasma soluble markers. Furthermore, the expansion of ABCs also had a direct impact on the capacity to develop antibodies response following routine vaccination

    Status of insecticide resistance in Anopheles gambiae (s.l.) of The Gambia.

    Get PDF
    BACKGROUND: Vector control activities, namely long-lasting insecticidal nets (LLIN) and indoor residual spraying (IRS), have contributed significantly to the decreasing malaria burden observed in The Gambia since 2008. Nevertheless, insecticide resistance may threaten such success; it is important to regularly assess the susceptibility of local malaria vectors to available insecticides. METHODS: In the transmission seasons of 2016 and 2017, Anopheles gambiae (s.l.) larvae were sampled in or around the nine vector surveillance sentinel sites of the Gambia National Malaria Control Programme (GNMCP) and in a few additional sampling points. Using WHO susceptibility bioassays, female adult mosquitoes were exposed to insecticide-impregnated papers. Molecular identification of sibling species and insecticide resistance molecular markers was done on a subset of 2000 female mosquitoes. RESULTS: A total of 4666 wild-caught female adult mosquitoes were exposed to either permethrin (n = 665), deltamethrin (n = 744), DDT (n = 1021), bendiocarb (n = 990) or pirimiphos-methyl (n = 630) insecticide-impregnated papers and control papers (n = 616). Among the 2000 anophelines, 1511 (80.7%) were Anopheles arabiensis, 204 (10.9%) Anopheles coluzzii, 75 (4%) Anopheles gambiae (s.s.), and 83 (4.4%) An. gambiae (s.s.) and An. coluzzii hybrids. There was a significant variation in the composition and species distribution by regions and year, P = 0.009. Deltamethrin, permethrin and DDT resistance was found in An. arabiensis, especially in the coastal region, and was mediated by Vgsc-1014F/S mutations (odds ratio = 34, P = 0.014). There was suspected resistance to pirimiphos-methyl (actellic 300CS) in the North Bank Region although only one survivor had the Ace-1-119S mutation. CONCLUSIONS: As no confirmed resistance to bendiocarb and actellic 300CS was detected, the national malaria control programme can continue using these insecticides for IRS. Nevertheless, the detection of Ace-1 119S mutation warrants extensive monitoring. The source of insecticide pressure driving insecticide resistance to pyrethroids and DDT detected at the coastal region should be further investigated in order to properly manage the spread of resistance in The Gambia

    Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.

    Get PDF
    Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases

    Developments of micro-sampling tools by laser ablation and mass spectrometry for the characterization of biological tissues

    No full text
    L’émergence de nouvelles sources ambiantes d’ionisation rendent possible l’étude par spectrométrie de masse d’échantillons natifs, sans préparation nécessaire. En combinaison avec des méthodes d’échantillonnage, elles permettent l’identification de biomolécules en conservant leur localisation histologique. Dans ce contexte, nous avons développé deux outils de micro-échantillonnage pour la caractérisation de tissus biologiques. Le 1er est basé sur l’ablation laser par une source impulsionnelle à 532 nm suivie de la capture en goutte du matériel ablatée. Nous avons démontré que l'analyse de biomolécules capturées était possible malgré leur faible absorbance à cette longueur d’onde. Ceci est dû à l’existence d’un mécanisme d’ablation induit par le substrat qui se substitue au processus d’ablation directe entre le laser et l’échantillon irradié. Cette stratégie a été appliquée avec succès à l’étude de protéines et de lipides sur tissu. Le 2nd est un nouvel instrument d’analyse de biomolécules en temps réel. Basé sur l’ablation laser à 2,94 µm - en coïncidence avec une bande d’absorption intense de l’eau - et couplé au spectromètre de masse par un tube d’aspiration, il permet la caractérisation de tissus biologiques ex vivo et in vivo. Les profils moléculaires générés correspondent à des métabolites et des lipides. Le caractère faiblement invasif et indolore de l’irradiation laser a été démontré lors d’études in vivo sur des phalanges d’individus volontaires. Le potentiel de ce dispositif est finalement démontré par une application clinique, le cancer de l’ovaire et le développement de banques de données de profils moléculaires correspondant aux différents grades de la pathologie.Recent advances in ambient ionization sources enable the study by mass spectrometry (MS) of native samples, without any preparation. In combination with sampling methods, they allow identification of biomolecules with respect to their histological localization. In this context, we have developed and explored the potential of two micro-sampling tools for the characterization of biological tissues. The first one consists in the ablation of analytes from biological sample using a ns laser at 532 nm and their subsequent capture in a solvent droplet which can then be analyzed by MS. We demonstrate that analyses are possible, despite the low absorbance of the biological material at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism which contrasts with the conventional direct ablation driven by analyte absorption. The second tool is an instrument for real-time analysis of biomolecules. Based on the laser ablation at 2.94 µm in coincidence with a strong absorption band of the water, and coupled to the spectrometer by a transfer line, it provides the ex vivo and in vivo characterization of biological tissue. Molecular profiles generated in real-time show signals corresponding to metabolites and lipids. The low-invasive and virtually painless nature of the laser irradiation was demonstrated through in vivo studies on phalanges of voluntary individuals. Finally, some of the developments made on this tool was dedicated for a clinical application, namely the ovarian cancer, and the development of the databases of molecular profiles corresponding to different grades of the disease

    Real time human micro-organisms biotyping based on Water-Assisted Laser Desorption/Ionization

    No full text
    We previously demonstrated that remote infrared Matrix Assisted Laser Desorption Ionization technology (Spidermass) using endogenous water as matrix (or so called water assisted laser desorption/ionization) was enabling real-time in vitro and in vivo analysis of clinical pathological tissues. In the present work, Spidermass was used to biotype human pathogens either from liquid bacteria growth in time course, from petri dish or on smears. Reproducibility experiments as well as bacteria dispersion and lipids identifications with SpiderMass in MS/MS mode were undertaken. The whole of the data establish that SpiderMass instrument allows real time bacteria biotyping and can be useful in clinic for pathogen identification

    Droplet-Based Liquid Extraction for Spatially-Resolved Microproteomics Analysis of Tissue Sections

    No full text
    International audienceObtaining information on protein content while keeping their localization on tissue or organ is of importance in different domains to understand pathophysiological processes. There is increasing interest in studying the microenvironment and heterogeneity of tumors, which currently is difficult with existing proteomics techniques. The advent of new techniques, like MALDI Mass Spectrometry Imaging, made a significant progress in the last decade but is characterized by a number of inherent drawbacks. One of these is the limited identification of proteins. New alternative approaches such as spatially-resolved liquid microextraction have recently been proposed to overcome this limitation. In this chapter, we describe strategies using liquid microjunction to perform extraction of previously digested peptides or of intact proteins from tissue section in a localized manner

    Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics

    No full text
    International audienceNumerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications
    • …
    corecore