62 research outputs found

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.

    Get PDF
    To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome

    Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle

    Get PDF
    Introduction During the menstrual cycle, the mammary gland goes through sequential waves of proliferation and apoptosis. in mammary epithelial cells, hormonal and non-hormonal factors regulate apoptosis. To determine the cyclical effects of gonadal steroids on breast homeostasis, we evaluated the apoptotic index ( AI) determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling ( TUNEL) staining in human mammary epithelial cells during the spontaneous menstrual cycle and correlated it with cellular proliferation as determined by the expression of Ki-67 during the same period.Methods Normal breast tissue samples were obtained from 42 randomly selected patients in the proliferative ( n = 21) and luteal ( n = 21) phases. Menstrual cycle phase characterization was based on the date of the last and subsequent menses, and on progesterone serum levels obtained at the time of biopsy.Results the proliferation index ( PI), defined as the number of Ki-67-positive nuclei per 1,000 epithelial cells, was significantly larger in the luteal phase (30.46) than in the follicular phase (13.45; P = 0.0033). the AI was defined as the number of TUNEL-positive cells per 1,000 epithelial cells. the average AI values in both phases of the menstrual cycle were not statistically significant ( P = 0.21). However, the cell renewal index ( CRI = PI/AI) was significantly higher in the luteal phase ( P = 0.033). A significant cyclical variation of PI, AI and CRI was observed. PI and AI peaks occurred on about the 24th day of the menstrual cycle, whereas the CRI reached higher values on the 28th day.Conclusions We conclude that proliferative activity is dependent mainly on hormonal fluctuations, whereas apoptotic activity is probably regulated by hormonal and non-hormonal factors.Universidade Federal de São Paulo, Dept Gyneol, Mastol Div, São Paulo, BrazilStanford Univ, Sch Med, Dept Neurosurg, Stanford, CA 94305 USAAPC Pathol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Gyneol, Mastol Div, São Paulo, BrazilWeb of Scienc

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    RANK, RANKL and osteoprotegerin in bone biology and disease

    Get PDF
    Upon the discovery of RANK, RANKL and OPG in the late 1990s, their importance in the maintenance of the skeletal structure and their dramatic role in bone disease were largely unexpected. In recent years the understanding of these proteins, in particular their regulation, has greatly increased. This review aims to bring the interested reader up to date with the latest news and views on the mechanisms controlling bone resorption in normal and pathological conditions

    Key signaling nodes in mammary gland development and cancer: β-catenin

    Get PDF
    β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer
    corecore