36 research outputs found

    Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1

    Get PDF
    The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a therapeutic target in oncology

    Biomarkers of apoptosis

    Get PDF
    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed

    Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p

    Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease

    No full text
    Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential
    corecore