1,896 research outputs found
Paradigm shift from student to researcher: An academic preparation program for international students
Although there are many Academic Preparation Programs designed for international postgraduate students, the importance of establishing “the role of the researcher” is rarely the focus of these programs. This role is a fundamental “threshold concept” (Meyer & Land, 2006) for postgraduate success which has the potential to be transformational at both Masters and PhD levels. This paper reports on an intensive academic preparation program (IAPP) for international postgraduate students commencing study at UNSW in 2009. This pilot program consisted of 40 hours facilitation prior to commencement of Semester 1, 2009. The program aimed to explore the “role of the researcher” by engaging in academic literacies fundamental to postgraduate expectations and empowering each student by acknowledging they were budding specialists in their disciplinary field. The design of the program encouraged personal responsibility for research and learning. This gave learners confidence to explore their reflective and critical learning process and to fine tune their research interests. Learning activities were designed to foster and record reflective practice. The use of a learning journal, group discussions and debriefings were central to the program and increased learners’ confidence as researchers. Student feedback of this pilot program was very positive and demonstrated its transformational nature. Based on this experience, we suggest that developing the “role of the researcher” offers another direction to consider when designing international preparation programs
Recommended from our members
Terahertz VRT spectroscopy of the water hexamer-d<inf>12</inf> prism: Dramatic enhancement of bifurcation tunneling upon librational excitation
Using diode laser vibration-rotation-tunneling spectroscopy near 15 Thz (500 cm−1), we have measured and assigned 142 transitions to three a-type librational subbands of the water hexamer-d12 prism. These subbands reveal dramatically enhanced (ca. 1000×) tunneling splittings relative to the ground state. This enhancement is in agreement with that observed for the water dimer, trimer, and pentamer in this same frequency region. The water prism tunneling motion has been predicted to potentially describe the motions of water in interfacial and confined environments; hence, the results presented here indicate that excitation of librational vibrations has a significant impact on the hydrogen bond dynamics in these macroscopic environments.</jats:p
Managing clinical trials
Managing clinical trials, of whatever size and complexity, requires efficient trial management. Trials fail because tried and tested systems handed down through apprenticeships have not been documented, evaluated or published to guide new trialists starting out in this important field. For the past three decades, trialists have invented and reinvented the trial management wheel. We suggest that to improve the successful, timely delivery of important clinical trials for patient benefit, it is time to produce standard trial management guidelines and develop robust methods of evaluation
Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994
On December 27, 1994, the WIND spacecraft crossed the lunar wake at a distance of 6.5 lunar radii ( RL ) behind the moon. The observations made were the first employing modem instruments and a high data rate. The SWE plasma instrument on WIND observed new aspects of the interaction between the solar wind and unmagnetized dielectric bodies. The plasma density decreased exponentially from the periphery of the wake towards its center as predicted by simple theory. Behind the moon two distinct cold ion beams were observed refilling the lunar cavity. The ions were accelerated along the direction of the magnetic field by an electric field of the order 2 × 10−4 volts/m. The region of plasma depletion was observed to extend beyond the light shadow, consistent with a rarefaction wave moving out from the wake into the undisturbed solar wind
Upstream ULF waves and energetic electrons associated with the lunar wake: Detection of precursor activity
We present observations of precursor ULF wave activity and energetic electron flows detected by the WIND spacecraft just prior to entry of the lunar wake on 27 December 1994. This activity occurs upstream of the wake on field lines directly connected to the wake penumbra region. The activity ceases near the penumbra entrance. The observations of upstream ULF wave activity and solar wind counterstreaming electron flows is similar to observations made upstream of collisionless bow shocks. Analogously, the wake precursor region is characterized by thermalization and information propagation ahead of the wake structure
Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.
During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A
Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions
Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups
Analysis of factors influencing the ultrasonic fetal weight estimation
Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation
- …