196 research outputs found

    An Updated Description of Heavy-Hadron Interactions in Geant-4

    Get PDF
    Exotic stable massive particles (SMP) are proposed in a number of scenarios of physics beyond the Standard Model. It is important that LHC experiments are able both to detect and extract the quantum numbers of any SMP with masses around the TeV scale. To do this, an understanding of the interactions of SMPs in matter is required. In this paper a Regge-based model of R-hadron scattering is extended and implemented in Geant-4. In addition, the implications of RR-hadron scattering for collider searches are discussed

    Sun exposure behaviour, seasonal vitamin D deficiency, and relationship to bone health in adolescents

    Get PDF
    YesContext: Vitamin D is essential for bone health in adolescence, where there is rapid bone mineral content accrual. As cutaneous sun-exposure provides vitamin D, there is no recommended oral intake for UK adolescents. Objective: Assess seasonal vitamin D status and its contributors in white Caucasian adolescents, and examine bone health in those found deficient. Design: Prospective cohort study. Setting: Six schools in Greater Manchester, UK. Participants: 131 adolescents, 12–15 years. Intervention(s): Seasonal assessment of circulating 25-hydroxyvitamin D (25OHD), personal sunexposure and dietary vitamin D. Adolescents deficient (25OHD <10 ng/mL/25 nmol/L) in ≥one season underwent dual-energy X-ray absorptiometry (lumbar spine, femoral neck), with bone mineral apparent density (BMAD) correction for size, and peripheral quantitative computed tomography (distal radius) for volumetric (v)BMD. Main Outcome Measure: Serum 25OHD; BMD. Results: Mean 25OHD was highest in September: 24.1 (SD 6.9) ng/mL and lowest in January: 15.5 (5.9) ng/mL. Over the year, 16% were deficient in ≥one season and 79% insufficient (25OHD <20 ng/mL/50 nmol/L) including 28% in September. Dietary vitamin D was low year-round while personal sun-exposure was seasonal and predominantly across the school week. Holidays accounted for 17% variation in peak 25OHD (p<0.001). Nineteen adolescents underwent bone assessment, which showed low femoral neck BMAD versus matched reference data (p=0.0002), 3 with Z≤ -2.0 distal radius trabecular vBMD. Conclusions: Sun-exposure levels failed to provide adequate vitamin D, ~one-quarter adolescents insufficient even at summer-peak. Seasonal vitamin D deficiency was prevalent and those affected had low BMD. Recommendations on vitamin D acquisition are indicated in this age-group.The Bupa Foundation (Grant number TBF-M10-017)

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde

    Constraining models of the large scale Galactic magnetic field with WMAP5 polarization data and extragalactic Rotation Measure sources

    Full text link
    We introduce a method to quantify the quality-of-fit between data and observables depending on the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and Rotation Measures of extragalactic sources in a joint analysis to obtain best fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We note that probing a very large parameter space is necessary to avoid false likelihood maxima. The thermal and relativistic electron densities are critical for determining the GMF from the observables but they are not well constrained. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized.Comment: 27 pages, 13 figures. Accepted for publication in JCAP; arXiv version updated to include minor revision

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    Ultra-High Energy Neutrino Fluxes and Their Constraints

    Full text link
    Applying our recently developed propagation code we review extragalactic neutrino fluxes above 10^{14} eV in various scenarios and how they are constrained by current data. We specifically identify scenarios in which the cosmogenic neutrino flux, produced by pion production of ultra high energy cosmic rays outside their sources, is considerably higher than the "Waxman-Bahcall bound". This is easy to achieve for sources with hard injection spectra and luminosities that were higher in the past. Such fluxes would significantly increase the chances to detect ultra-high energy neutrinos with experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
    corecore