6 research outputs found

    Vetas de cromitita en ortopiroxenita anómalamente enriquecidas en minerales del grupo del platino de la ofiolita Habana-Matanzas, Cuba

    Get PDF
    The Havana–Matanzas Ophiolite contains one of the few examples of ophiolitic platinum group minerals (PGM)-rich chromitites associated with orthopyroxenites in the mantle section of ophiolitic complexes. The chromitites occur as veins hosted by orthopyroxenite bands within mantle peridotites. The peridotites are mostly harzburgites and their accessory chromite shows high-Al compositions (Cr# [Cr/(Cr+Al), atomic ratio] = 0.39–0.50), which are typical of spinels in abyssal peridotites. Conversely, chromite from the chromitite veins and their host orthopyroxenite are high-Cr (Cr# = 0.72–0.73 and 0.62–0.69, respectively), with lower Mg# [Mg/(Mg+Fe2+), atomic ratio]. This suggests that both the chromitite and the orthopyroxenite formed from melts with boninitic affinity. The abundant PGM inclusions found in the chromitites are mainly Os-rich laurite grains, which is also characteristic of chromitites formed from magmas with boninitic affinity. Therefore, we propose that the chromitite veins and the orthopyroxenite bands probably formed contemporaneously in the fore-arc setting of an intra-oceanic arc during subduction. The chromitite-orthopyroxenite pair of the Havana-Matanzas Ophiolite could form after the reaction of a Si-rich melt with boninitic affinity and mantle harzburgite, with the orthopyroxenite bands preserving fingerprints of the infiltration of boninitic- affinity melts within the mantle. The small volume of forming chromitite could maximize the efficiency for the mechanical collection of the PGM forming in the parental melt of these rocks, resulting in the anomalous enrichment of primary PGM in the chromitites.La ofiolita de Habana-Matanzas contiene uno de los pocos ejemplos de cromititas ricas en minerales del grupo del platino (MGP) asociadas a ortopiroxenitas de la sección mantélica de complejos ofiolíticos. Las cromititas ocurren como venas encajadas en bandas de ortopiroxenita dentro de la peridotita mantélica. Las peridotitas son mayoritariamente harzburgitas con cromita accesoria rica en Al (#Cr [Cr/(Cr+Al), cociente atómico] = 0.39–0.50), lo cual es típico de espinelas en peridotitas abisales. Por otro lado, la cromita perteneciente a las venas de cromitita y a la ortopiroxenita encajante es rica en Cr (#Cr = 0.72–0.73 y 0.62–0.69, respectivamente) y con bajo #Mg [Mg/(Mg+Fe2+), cociente atómico]. Esto sugiere que tanto las venas de cromitita como la ortopiroxenita se formaron a partir de fundidos de afinidad boninítica. Las abundantes inclusiones de MGP encontradas en las cromititas son principalmente granos de laurita ricos en Os, lo cual también es propio de cromititas formadas a partir de magmas con afinidad boninítica. Por lo tanto, proponemos que las venas de cromitita y las bandas de ortopiroxenitas se formaron contemporáneamente en un contexto de ante-arco en un arco intra-oceánico durante el proceso de subducción. El conjunto cromitita-ortopiroxenita de la ofiolita de Habana- Matanzas se formó por la reacción de fundidos ricos en Si con afinidad boninítica y la harzburgita mantélica. Las bandas de ortopiroxenitas sería la huella química que habrían dejado estos fundidos boniníticos al infiltrarse por el manto. El volumen reducido de las cromititas que se formaron maximizó la eficiencia del proceso de recolección mecánica de los MGP que se formaban en el fundido parental, dando lugar al enriquecimiento de MGP primarios como inclusiones en las cromititas

    Mechanisms for Pd-Au enrichment in porphyry-epithermal ores of the Elatsite deposit, Bulgaria

    Get PDF
    This research was supported by Spanish projects: RTI2018-099157-A-I00, CGL2015-65824-P and CGL2016-81085-R granted by the "Ministerio de Ciencia, Innovacion y Universidades" and "Ministerio de Economia y Competitividad" (MINECO), respectively. Additional funding for chemical analysis was provided by the Ramon y Cajal Fellowship RYC-2015-17596 to JMGJ. Maria del Mar Abad, Isabel Sancez Almazo and Rocio Marquez Crespo (CIC, University of Granada) are acknowledged for her assistance with HRTEM, and HR-SEM and FESEM analysis respectively. We are also indebted to Miguel Angel Hidalgo Laguna from CIC of University of Granada and Xavier Llovet from the Centres Cientifics i Tecnologics of the Universitat of Barcelona (CCiTUB) for their careful help with EMPA. This paper was written during the lockdown provoked by the pandemic COVID-19 and the authors would like to dedicate this manuscript to the memory of those who lost their lives.Porphyry Cu can contain significant concentrations of platinum-group elements (PGE: Os, Ir, Ru, Rh, Pt, Pd). In this study, we provide a comprehensive in situ analysis of noble metals (PGE, Au, Ag) for (Cusingle bondFe)-rich sulfides from the Elatsite, one of the world's PGE-richest porphyry Cu deposits. These data, acquired using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicate that Pd was concentrated in all the (Cusingle bondFe)-rich sulfides at ppm-levels, with higher values in pyrite (~6 ppm) formed at the latest epithermal stage (i.e., quartz–galena–sphalerite assemblage) than in bornite and chalcopyrite (<5 ppm) from the hypogene quartz–magnetite–bornite–chalcopyrite ores. Likewise, Au is significantly more concentrated in pyrite (~5 ppm) than in the (Cusingle bondFe)-rich sulfides (≤0.08 ppm). In contrast, Ag reaches hundreds of ppm in pyrite and bornite (~240 ppm) but is in much lesser amounts in chalcopyrite (<25 ppm). The inspection of the time-resolved spectra collected during LA-IPC-MS analyses indicates that noble metals are present in the sulfides in two forms: (1) structurally bound (i.e., solid solution) in the lattice of sulfides and, (2) as nano- to micron-sized inclusions (Pdsingle bondTe and Au). These observations are further confirmed by careful investigations of the PGE-rich (Cusingle bondFe)-rich sulfides by combining high-spatial resolution of field emission scanning electron microscope (FESEM) and focused ion beam and high-resolution transmission electron microscopy (FIB/HRTEM). A typical Pd-bearing mineral includes the composition PdTe2 close to the ideal merenskyite but with a distinct crystallographic structure, whereas Au is mainly found as native element. Our detailed mineralogical study coupled with previous knowledge on noble-metal inclusions in the studied ores reveals that noble metal enrichment in the Elatsite porphyry ores was mainly precipitated from droplets of Au-Pd-Ag telluride melt (s) entrained in the high-temperature hydrothermal fluid. These telluride melts could separate at the time of fluid unmixing from the silicate magma or already be present in the latter either derived from deep-seated crustal or mantle sources. Significant enrichment in Pd and Au (the latter correlated with As) in low-temperature pyrite is interpreted as remobilization of these noble metals from pre-existing hypogene ores during the epithermal overprinting.Spanish projects - "Ministerio de Ciencia, Innovacion y Universidades" RTI2018-099157-A-I00 CGL2015-65824-P CGL2016-81085-RSpanish projects - "Ministerio de Economia y Competitividad" (MINECO) RTI2018-099157-A-I00 CGL2015-65824-P CGL2016-81085-RSpanish Government RYC-2015-1759

    Jardins per a la salut

    Get PDF
    Facultat de Farmàcia, Universitat de Barcelona. Ensenyament: Grau de Farmàcia. Assignatura: Botànica farmacèutica. Curs: 2014-2015. Coordinadors: Joan Simon, Cèsar Blanché i Maria Bosch.Els materials que aquí es presenten són el recull de les fitxes botàniques de 128 espècies presents en el Jardí Ferran Soldevila de l’Edifici Històric de la UB. Els treballs han estat realitzats manera individual per part dels estudiants dels grups M-3 i T-1 de l’assignatura Botànica Farmacèutica durant els mesos de febrer a maig del curs 2014-15 com a resultat final del Projecte d’Innovació Docent «Jardins per a la salut: aprenentatge servei a Botànica farmacèutica» (codi 2014PID-UB/054). Tots els treballs s’han dut a terme a través de la plataforma de GoogleDocs i han estat tutoritzats pels professors de l’assignatura. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autònom i col·laboratiu en Botànica farmacèutica. També s’ha pretès motivar els estudiants a través del retorn de part del seu esforç a la societat a través d’una experiència d’Aprenentatge-Servei, deixant disponible finalment el treball dels estudiants per a poder ser consultable a través d’una Web pública amb la possibilitat de poder-ho fer in-situ en el propi jardí mitjançant codis QR amb un smartphone

    Ophiolite hosted chromitite formed by supra-subduction zone peridotite –plume interaction

    Get PDF
    Chromitite bodies hosted in peridotites typical of suboceanic mantle (s.l. ophiolitic) are found in the northern and central part of the Loma Caribe peridotite, in the Cordillera Central of the Dominican Republic. These chromitites are massive pods of small size (less than a few meters across) and veins that intrude both dunite and harzburgite. Compositionally, they are high-Cr chromitites [Cr# ¼ Cr/(Cr þ Al) atomic ratio ¼ 0.71–0.83] singularly enriched in TiO2 (up to 1.25 wt.%), Fe2O3 (2.77–9.16 wt.%) as well as some trace elements (Ga, V, Co, Mn, and Zn) and PGE (up to 4548 ppb in whole-rock). This geochemical signature is unknown for chromitites hosted in oceanic upper mantle but akin to those chromites crystallized from mantle plume derived melts. Noteworthy, the melt estimated to be in equilibrium with such chromite from the Loma Caribe chromitites is similar to basalts derived from different source regions of a heterogeneous Caribbean mantle plume. This mantle plume is responsible for the formation of the Caribbean Large Igneous Province (CLIP). Dolerite dykes with back-arc basin basalt (BABB) and enriched mid-ocean ridge basalt (E-MORB) affinities commonly intrude the Loma Caribe peridotite, and are interpreted as evidence of the impact that the Caribbean plume had in the off-axis magmatism of the back-arc basin, developed after the Caribbean island-arc extension in the Late Cretaceous. We propose a model in which chromitites were formed in the shallow portion of the back-arc mantle as a result of the metasomatic reaction between the supra-subduction zone (SSZ) peridotites and upwelling plume-related melts.European Union (EU)Spanish Ministerio de Economia y Competitividad (MINECO) CGL2015-65824Ministerio de Glenda, Innovation y Universidades (MICINN) RTI2018-099157-A-100Ramon y Cajal Fellowship (MICINN) RYC-2015-17596MINECO BES-2016-076887Mexican research programs Glenda Basica - Consejo Nacional de CiencM y Tecnologia (CONACYT) from Mexico Al -S14574Programa de Apoyo a Proyectos de Investigation e Innovation tecnologica - UNAM IA-101419University of BarcelonaUniversity of Granada, Spai

    Mineralogy of the HSE in the subcontinental lithospheric mantle - An interpretive review

    No full text
    The highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pt, Pd, Re, Au) exist in solid solution in accessory base-metal sulfides (BMS) as well as nano-to-micron scale minerals in rocks of the subcontinental lithospheric mantle (SCLM). The latter include platinum-group minerals (PGM) and gold minerals, which may vary widely in morphology, composition and distribution. The PGM form isolated grains often associated with larger BMS hosted in residual olivine, located at interstices in between peridotite-forming minerals or more commonly in association with metasomatic minerals (pyroxenes, carbonates, phosphates) and silicate glasses in some peridotite xenoliths. The PGM found inside residual olivine are mainly Os-, Ir- and Ru-rich sulfides and alloys. In contrast, those associated with metasomatic minerals or silicate glasses of peridotite xenoliths consist of Pt, Pd, and Rh bonded with semimetals like As, Te, Bi, and Sn. Nanoscale observations on natural samples along with the results of recent experiments indicate that nucleation of PGM is mainly related with the uptake of HSE by nanoparticles, nanominerals or nanomelts at high temperature (&gt; 900 °C) in both silicate and/or sulfide melts, regardless of the residual or metasomatic origin of their host minerals. A similar interpretation can be assumed for gold minerals. Our observations highlight that nanoscale processes play an important role on the ore-forming potential of primitive mantle-derived magmas parental to magmatic-hydrothermal deposits enriched in noble metals. The metal inventory in these magmas could be related with the physical incorporation of HSE-bearing nanoparticles or nanomelts during processes of partial melting of mantle peridotite and melt migration from the mantle to overlying continental crust
    corecore