91 research outputs found

    Close Encounters of Star - Black Hole Binaries with Single Stars

    Full text link
    Multi-body dynamical interactions of binaries with other objects are one of the main driving mechanisms for the evolution of star clusters. It is thus important to bring our understanding of three-body interactions beyond the commonly employed point-particle approximation. To this end we here investigate the hydrodynamics of three-body encounters between star-black hole (BH) binaries and single stars, focusing on the identification of final outcomes and their long-term evolution and observational properties, using the moving-mesh hydrodynamics code AREPO. This type of encounters produces five types of outcomes: stellar disruption, stellar collision, weak perturbation of the original binary, binary member exchange, and triple formation. The two decisive parameters are the binary phase angle, which determines which two objects meet at the first closest approach, and the impact parameter, which sets the boundary between violent and non-violent interactions. When the impact parameter is smaller than the semimajor axis of the binary, tidal disruptions and star-BH collisions frequently occur when the BH and the incoming star first meet, while the two stars mostly merge when the two stars meet first instead. In both cases, the BHs accrete from an accretion disk at super-Eddington rates, possibly generating flares luminous enough to be observed. The stellar collision products either form a binary with the BH or remain unbound to the BH. Upon collision, the merged stars are hotter and larger than main sequence stars of the same mass at similar age. Even after recovering their thermal equilibrium state, stellar collision products, if isolated, would remain hotter and brighter than main sequence stars until becoming giants.Comment: 16 pages, 10 figures, 2 tables. Submitted to MNRA

    Close Encounters of Tight Binary Stars with Stellar-mass Black Holes

    Full text link
    Strong dynamical interactions among stars and compact objects are expected in a variety of astrophysical settings, such as star clusters and the disks of active galactic nuclei. Here, via a suite of 3D hydrodynamics simulations using the moving-mesh code {\small AREPO}, we investigate the effect of close encounters between an equal-mass circular binary star with mass of 2M2M_{\odot} or 20M20M_{\odot} and single 20M20M_{\odot} black hole (BH), focusing on the formation of transient phenomena and their properties. Stars can be disrupted by the BH during three-body dynamical interactions, naturally producing electromagnetic transient phenomena. Encounters with impact parameters smaller than the semimajor axis of the initial binary frequently lead to a variety of transients whose electromagnetic signatures are qualitatively different from those of ordinary tidal disruption events involving just two bodies. These include the simultaneous or successive full disruptions of both stars and one full disruption of one star accompanied by successive partial disruptions of the other star. On the other hand, when the impact parameter is larger than the semimajor axis of the initial binary, the binary is either simply tidally perturbed or dissociated into bound and unbound single stars (``micro-Hills'' mechanism). We found that the dissociation of binaries consisting of 10M10M_{\odot} stars can produce the formation of a runaway star and an active isolated BH moving away from one another. Also, one of the unbound stars produced in the binary dissociation can either form an interacting binary with the BH, or a non-interacting, hard binary (which may later shrink via weak encounters); both of these could be candidates of BH high- and low-mass X-ray binaries with periodic luminosity modulation.Comment: 13 pages, 8 figures, 2 tables. submitted to MNRAS. Comments welcome

    Cyrene™, a Sustainable Solution for Graffiti Paint Removal

    Get PDF
    Graffiti can create detrimental aesthetic and environmental damage to city infrastructure and cultural heritage and requires improved removal methods. Incumbent laser, mechanical and chemical removal techniques are often not effective, are expensive or damage the substrate. Solvents are generally hazardous and not always effective because of the insolubility of the graffiti paint. This study proposes a simple strategy for safe and effective graffiti removal, using the bio-based, non-toxic and biodegradable solvent dihydrolevoglucosenone (Cyrene™). The results showed that the type of substrate influenced the cleaning performance; in benchmark studies a non-porous substrate was easy to clean, while porous ceramic showed the presence of residual paint and yellowing when the conventional polar aprotic solvents were used. Cyrene, however, showed good removability of graffiti paint from both glazed and porous substrates, with little paint remaining in the pores of ceramic tiles. The paint suffered a reversible change in colour and a selective solubility of its components when using N-methyl-2-pyrrolidone; no changes occurred when Cyrene was used. While N-methyl-2-pyrrolidone and N,N′-dimethylformamide were only effective when neat, a Cyrene–water mixture showed some cleaning results. The performance of Cyrene was validated with Hansen solubility parameters and represents a greener and more sustainable solvent for paint removal

    A class of surfactants via PEG modification of the oleate moiety of lactonic sophorolipids : synthesis, characterisation and application

    Get PDF
    There is ever increasing demand to develop surfactants based on sophorolipids because they are produced by non-pathogenic organisms, biodegradable and less toxic to humans and the environment. Herein, commercially available lactonic sophorolipid was modified via epoxidation of the fatty acid units C[double bond, length as m-dash]C and subsequent ring-opening of the oxirane with poly(ethylene glycol) of vary chain lengths to deliver a novel range of non-ionic sophorolipid-based surfactants. The methods employed for ring-opening reaction lead to a final surfactant synthesis involving heterogeneous catalysis (metal-exchanged montmorillonite), use of a benign solvent (ethyl acetate) and short reaction time (60 minutes). The resulting surfactants were structurally characterised and a prediction of their potential applications achieved using the hydrophilic-lipophilic balance (HLB) concept, foam capacity and stability of the surfactants at 0.25% surfactant solution. This new family of bio-derivable non-ionic surfactants will be useful as wetting and solubilising agents, oil-in-water emulsifiers and detergents

    Reaction Optimization for Greener Chemistry with a Comprehensive Spreadsheet Tool

    Get PDF
    Green chemistry places an emphasis on safer chemicals, waste reduction, and efficiency. Processes should be optimized with green chemistry at the forefront of decision making, embedded into research at the earliest stage. To assist in this endeavor, we present a spreadsheet that can be used to interpret reaction kinetics via Variable Time Normalization Analysis (VTNA), understand solvent effects with linear solvation energy relationships (LSER), and calculate solvent greenness. With this information, new reaction conditions can be explored in silico, calculating product conversions and green chemistry metrics prior to experiments. The application of this tool was validated with literature case studies. Reaction performance was predicted and then confirmed experimentally for examples of aza-Michael addition, Michael addition, and an amidation. The combined analytical package presented herein permits a thorough examination of chemical reactions, so that the variables that control reaction chemistry can be understood, optimized, and made greener for research and education purposes

    Supporting People With Type 2 Diabetes in the Effective Use of Their Medicine Through Mobile Health Technology Integrated With Clinical Care to Reduce Cardiovascular Risk : Protocol for an Effectiveness and Cost-effectiveness Randomized Controlled Trial

    Get PDF
    Funding Information: The Support Through Mobile Messaging and Digital Health Technology for Diabetes research team acknowledges the support of the National Institute for Health Research (NIHR) through the Clinical Research Networks. AF, LT, and RR have received support from the NIHR Oxford Biomedical Research Centre. RH received support from the NIHR Collaboration for Leadership in Applied Health Research and Care and North Thames at Bart's Health National Health Service (NHS) Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health. This paper presents independent research funded by the NIHR under its Program Grants for Applied Research as part of a wider program of work (RP-PG-1214-20003). The authors thank the personnel of the University of Oxford Primary Care and Vaccines Clinical Trials Collaborative for providing support in the conduct of the trial.Peer reviewedPublisher PD

    Key questions in marine mammal bioenergetics

    Get PDF
    This work was funded by the Marine Mammal Commission (MMC19-173). The Office of Naval Research funded the bioenergetic workshop (N000142012392) that provided support for this work.Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as ‘key’ questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.Publisher PDFPeer reviewe

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
    corecore