3,612 research outputs found
Sclerostin does not play a major role in the pathogenesis of skeletal complications in type 2 diabetes mellitus
In contrast to previously reported elevations in serum sclerostin levels in diabetic patients, the present study shows that the impaired bone microarchitecture and cellular turnover associated with type 2 diabetes mellitus (T2DM)-like conditions in ZDF rats are not correlated with changes in serum and bone sclerostin expression. INTRODUCTION: T2DM is associated with impaired skeletal structure and a higher prevalence of bone fractures. Sclerostin, a negative regulator of bone formation, is elevated in serum of diabetic patients. We aimed to relate changes in bone architecture and cellular activities to sclerostin production in the Zucker diabetic fatty (ZDF) rat. METHODS: Bone density and architecture were measured by micro-CT and bone remodelling by histomorphometry in tibiae and femurs of 14-week-old male ZDF rats and lean Zucker controls (n = 6/group). RESULTS: ZDF rats showed lower trabecular bone mineral density and bone mass compared to controls, due to decreases in bone volume and thickness, along with impaired bone connectivity and cortical bone geometry. Bone remodelling was impaired in diabetic rats, demonstrated by decreased bone formation rate and increased percentage of tartrate-resistant acid phosphatase-positive osteoclastic surfaces. Serum sclerostin levels (ELISA) were higher in ZDF compared to lean rats at 9 weeks (+40 %, p < 0.01), but this difference disappeared as their glucose control deteriorated and by week 14, ZDF rats had lower sclerostin levels than control rats (-44 %, p < 0.0001). Bone sclerostin mRNA (qPCR) and protein (immunohistochemistry) were similar in ZDF, and lean rats at 14 weeks and genotype did not affect the number of empty osteocytic lacunae in cortical and trabecular bone. CONCLUSION: T2DM results in impaired skeletal architecture through altered remodelling pathways, but despite altered serum levels, it does not appear that sclerostin contributes to the deleterious effect of T2DM in rat bone
Recommended from our members
Validation study of air-sea gas transfer modeling
Laboratory results have demonstrated the importance of bubble plumes to air-water gas transfer (Asher et al., 1994). Bubble plumes enhance gas transfer by disrupting surface films, by directly transporting a gas, and by the creation of turbulence. Models of bubble gas transfer have been developed by different authors (Atkinson, 1973; Memery and Merlivat, 1985; Woolf and Thorpe, 1991) to determine the magnitude of gas transfer due to bubbles. Laboratory measurements of both the gas transfer rate k{sub L}, and the bubble distribution {phi} in a whitecap simulation tank (WST) have allowed these models to be validated and deficiencies in the theoretical assumptions to be explored. In the WST, each bucket tip simulates a wave breaking event. Important tests of these models include whether they can explain the experimentally determined solubility and Schmidt number dependency of k{sub L}, predict the time varying bubble concentrations, predict the evasion-invasion asymmetry, and predict the fraction of k{sub L} due to bubble plumes. Four different models were tested, a steady state model (Atkinson, 1973), a non-turbulence model with constant bubble radius (Memery and Merlivat, 1985), a turbulence model with constant bubble radius (Wolf and Thorpe, 1991), and a turbulence model with varying bubble radius. All models simulated multiple bubble tip cycles. The two turbulence models were run for sufficient tip cycles to generate statistically significant number of eddies ({number_sign}{gt}50) for bubbles affected by turbulence (V{sub B}{le}V{sub T}), found to be at least four tip cycles. The models allowed up to nine gases simultaneously and were run under different conditions of trace and major gas concentrations and partial pressures
Radiative energy shifts of accelerated atoms
We consider the influence of acceleration on the radiative energy shifts of
atoms in Minkowski space. We study a two-level atom coupled to a scalar quantum
field. Using a Heisenberg picture approach, we are able to separate the
contributions of vacuum fluctuations and radiation reaction to the Lamb shift
of the two-level atom. The resulting energy shifts for the special case of a
uniformly accelerated atom are then compared with those of an atom at rest.Comment: 12 pages, Latex, 1 figure as uuencoded eps file, shorter version will
appear in Phys. Rev.
Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence
The fundamental problem of Farley-Buneman turbulence in the auroral
-region has been discussed and debated extensively in the past two decades.
In the present paper we intend to clarify the different steps that the auroral
-region plasma has to undergo before reaching a steady state. The
mode-coupling calculation, for Farley-Buneman turbulence, is developed in order
to place it in perspective and to estimate its magnitude relative to the
anomalous effects which arise through the nonlinear wave-particle interaction.
This nonlinear effect, known as nonlinear ``Landau damping'' is due to the
coupling of waves which produces other waves which in turn lose energy to the
bulk of the particles by Landau damping. This leads to a decay of the wave
energy and consequently a heating of the plasma. An equation governing the
evolution of the field spectrum is derived and a physical interpration for each
of its terms is provided
Sensitive Search for a Permanent Muon Electric Dipole Moment
We are proposing a new method to carry out a dedicated search for a permanent
electric dipole moment (EDM) of the muon with a sensitivity at a level of
10^{-24} e cm. The experimental design exploits the strong motional electric
field sensed by relativistic particles in a magnetic storage ring. As a key
feature, a novel technique has been invented in which the g-2 precession is
compensated with radial electric field. This technique will benefit greatly
when the intense muon sources advocated by the developers of the muon storage
rings and the muon colliders become available.Comment: 16 pages, 3 figures. Submitted for publication in Proceedings of the
International Workshop on High Intensity Muon Sources (HIMUS99), KEK, Japan,
December 1-4 199
Realistic modeling of leakage and intrusion flows through leak openings in pipes
The hydraulics of leakage and intrusion flows through leak openings in pipes is complicated by variations in the leak areas owing
to changes in pressure. This paper argues that the pressure–area relationship can reasonably be assumed to be a linear function, and a modified
orifice equation is proposed for more realistic modeling of leakage and intrusion flows. The properties of the modified orifice equation are
explored for different classes of leak openings. The implications for the current practice of using a power equation to model leakage and
intrusion flows are then investigated. A mathematical proof is proposed for an equation linking the parameters of the modified orifice and
power equations using the concept of a dimensionless leakage number. The leakage exponent of a given leak opening is shown to generally
not be constant with variations in pressure and to approach infinity when the leakage number approaches a value of minus one. Significant
modeling errors may result if the power equation is extrapolated beyond its calibration pressure range or at high exponent values. It is
concluded that the modified orifice equation and leakage number provide a more realistic description of leakage and intrusion flows,
and it is recommended that this approach be adopted in modeling studies
Large sulfur isotope fractionations in Martian sediments at Gale crater
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods
CP violation from noncommutative geometry
If the geometry of space-time is \nc, i.e. , then \nc \cpviolng effects may be manifest at low energies. For a
\nc scale , \cpviol from \ncg is
comparable to that from the Standard Model (SM) alone: the \nc contributions
to and in the -system, may actually dominate
over the Standard Model contributions. Present data permit \ncg to be the
only source of \cpviol. Furthermore the most recent findings for g-2 of the
muon are consistent with predictions from \ncg. If the geometry of space-time
is \nc, , then \nc \cpviolng
effects may be manifest at low energies. For a \nc scale , \cpviol from \ncg is comparable to that from the
Standard Model (SM) alone: the \nc contributions to and
in the K-system, may actually dominate over the Standard
Model contributions. Present data permit \ncg to be the only source of
\cpviol. Furthermore the most recent findings for g-2 of the muon are
consistent with predictions from \ncg.Comment: fixed notation, corrected some typo
- …