64 research outputs found

    Medication diaries do not improve outcomes with highly active antiretroviral therapy in Kenyan children: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As highly active antiretroviral therapy (HAART) becomes increasingly available to African children, it is important to evaluate simple and feasible methods of improving adherence in order to maximize benefits of therapy.</p> <p>Methods</p> <p>HIV-1-infected children initiating World Health Organization non-nucleoside reverse transcriptase-inhibitor-containing first-line HAART regimens were randomized to use medication diaries plus counselling, or counselling only (the control arm of the study). The diaries were completed daily by caregivers of children randomized to the diary and counselling arm for nine months. HIV-1 RNA, CD4+ T cell count, and z-scores for weight-for-age, height-for-age and weight-for-height were measured at a baseline and every three to six months. Self-reported adherence was assessed by questionnaires for nine months.</p> <p>Results</p> <p>Ninety HIV-1-infected children initiated HAART, and were followed for a median of 15 months (interquartile range: 2–21). Mean CD4 percentage was 17.2% in the diary arm versus 16.3% in the control arm at six months (p = 0.92), and 17.6% versus 18.9% at 15 months (p = 0.36). Virologic response with HIV-1 RNA of <100 copies/ml at nine months was similar between the two arms (50% for the diary arm and 36% for the control, p = 0.83). The weight-for-age, height-for-age and weight-for-height at three, nine and 15 months after HAART initiation were similar between arms. A trend towards lower self-reported adherence was observed in the diary versus the control arm (85% versus 92%, p = 0.08).</p> <p>Conclusion</p> <p>Medication diaries did not improve clinical and virologic response to HAART over a 15-month period. Children had good adherence and clinical response without additional interventions. This suggests that paediatric HAART with conventional counselling can be a successful approach. Further studies on targeted approaches for non-adherent children will be important.</p

    Identifying models of HIV care and treatment service delivery in Tanzania, Uganda, and Zambia using cluster analysis and Delphi survey.

    Get PDF
    BACKGROUND: Organization of HIV care and treatment services, including clinic staffing and services, may shape clinical and financial outcomes, yet there has been little attempt to describe different models of HIV care in sub-Saharan Africa (SSA). Information about the relative benefits and drawbacks of different models could inform the scale-up of antiretroviral therapy (ART) and associated services in resource-limited settings (RLS), especially in light of expanded client populations with country adoption of WHO's test and treat recommendation. METHODS: We characterized task-shifting/task-sharing practices in 19 diverse ART clinics in Tanzania, Uganda, and Zambia and used cluster analysis to identify unique models of service provision. We ran descriptive statistics to explore how the clusters varied by environmental factors and programmatic characteristics. Finally, we employed the Delphi Method to make systematic use of expert opinions to ensure that the cluster variables were meaningful in the context of actual task-shifting of ART services in SSA. RESULTS: The cluster analysis identified three task-shifting/task-sharing models. The main differences across models were the availability of medical doctors, the scope of clinical responsibility assigned to nurses, and the use of lay health care workers. Patterns of healthcare staffing in HIV service delivery were associated with different environmental factors (e.g., health facility levels, urban vs. rural settings) and programme characteristics (e.g., community ART distribution or integrated tuberculosis treatment on-site). CONCLUSIONS: Understanding the relative advantages and disadvantages of different models of care can help national programmes adapt to increased client load, select optimal adherence strategies within decentralized models of care, and identify differentiated models of care for clients to meet the growing needs of long-term ART patients who require more complicated treatment management

    Systemic infection of mice with neuroinvasive Listeria monocytogenes triggers cognitive decline and persistent increases in brain CD8+ T-lymphocyte populations

    No full text
    Background: Leukocytes recruited into the central nervous system after infection help clear pathogens and provide long-lasting immune surveillance, but also can contribute to harmful post-infectious neuroinflammation. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen of humans and a commonly used model organism for studying immune responses to infection. Post-infectious cognitive decline in Lm infected mice has not been demonstrated. We hypothesized that neuroinvasive Lm infection would trigger cognitive decline in accord with persistence of increased numbers of recruited leukocytes in the brain. Methods: Male C57BL/6J mice (age 8 wks) were injected intraperitoneally with neuroinvasive Lm strain 10403s, avirulent non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Ethovision PhenoTyper with Cognition Wall (Noldus), a food reward-based discrimination procedure using automated home cage based observation and data analysis with continuous monitoring. Brain leukocytes were analyzed flow cytometry. Results: Mice infected with neuroinvasive Lm 10403s, but not Δhly Lm, had significantly worse cognitive outcomes than did uninfected mice 4 mo p.i. but not 1 mo p.i. Changes included decreased movement, delayed success in criterion achievement, and impaired extinguishing of prior learning. Numbers of CD8+ and CD4+ T-lymphocytes, and subpopulations expressing CD69 and tissue resident memory (TRM) cells were significantly increased 1 mo after infection with Lm 10403s, but not Δhly Lm. By 4 mo p.i., CD8+, CD69+CD8+T-lymphocytes and CD8+ TRM remained significantly elevated, but CD4+ cells were not different from uninfected mice. Greater numbers of CD8+ cells, particularly CD8+ TRM, and lower CD4/CD8 ratio correlated significantly with reduced movement and increased time to criterion success. Conclusions: Cognitive impairment follows recovery from neuroinvasive Lm infection but not by Lm Δhly mutants that do not induce brain inflammation. Identification of dynamic shifts in brain CD8+ and CD4+ T-lymphocyte populations coupled with cognitive assessments suggest CD8+ cells, e.g. CD8+ TRM, promote neuroinflammation and injury whereas CD4+ cells may have regulatory activity. Cognitive decline manifests as initial influxes of CD4+ cells regress towards homeostatic levels while numbers of CD8+ cells remain significantly elevated

    DataSheet_1_Progressive cognitive impairment after recovery from neuroinvasive and non-neuroinvasive Listeria monocytogenes infection.docx

    No full text
    BackgroundNeuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes.MethodsMale C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry.ResultsChanges suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance.ConclusionsSystemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.</p

    Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment

    No full text
    Abstract Background Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Methods Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. Results We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. Conclusions These data demonstrate a novel, coordinated age-related induction of the MHC II immune response pathway and glial activation in the hippocampus, indicating an allostatic shift toward a para-inflammatory phenotype with advancing age. Our findings demonstrate that age-related induction of these aspects of hippocampal neuroinflammation, while a potential contributing factor, is not sufficient by itself to elicit impairment of spatial learning and memory in models of normative aging. Future efforts are needed to understand how neuroinflammation may act synergistically with cognitive-decline specific alterations to cause cognitive impairment.</p
    • …
    corecore