413 research outputs found

    On the reorientation transition of ultra-thin Ni/Cu(001) films

    Full text link
    The reorientation transition of the magnetization of ferromagnetic films is studied on a microscopic basis within a Heisenberg spin model. Using a modified mean field formulation it is possible to calculate properties of magnetic thin films with non-integer thicknesses. This is especially important for the reorientation transition in Ni/Cu(001), as there the magnetic properties are a sensitive function of the film thickness. Detailed phase diagrams in the thickness-temperature plane are calculated using experimental parameters and are compared with experimental measurements by Baberschke and Farle (J. Appl. Phys. 81, 5038 (1997)).Comment: 7 pages(LaTeX2e) with one figure(eps), accepted for publication in JMMM. See also http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm

    Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies

    Full text link
    We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance frequency as a function of the field and the resonance field as a function of the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis of experimental data of resonance type measurements for which we give a worked example of an iron thin film with mixed anisotropy.Comment: 7 pages, 3 figure

    ORIENTATED FePt NANOCRYSTALS DEPOSITED ON POROUS SILICON

    Get PDF
    FePt nanocrystals with L10 chemical order have high magnetic anisotropy. To form the hard magnetic L10 phase as prepared fcc FePt nanocrystals need to be heated to 600°C. We demonstrate that the morphology of chemically etched porous silicon (PS) substrates and the presence of a magnetic field during the annealing process (600 °C, 1 h) affect the particle arrangement and orientation. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) show the presence of the L10 ordered FePt particles (average diameter 15 nm) uniformly distributed on the substrate. The presence of perpendicular magnetic field during annealing increases the order parameter degree of L10 FePt NPs. These effects can be investigated from variations of the XRD peaks intensity ratio. Presence of magnetic field of 20mT in the perpendicular direction to the substrate surface increases the (001) peak intensity ratio with respect to (111) peak from 0.27 to 0.58. This effect is due to the superlattice formation at (001) direction

    Continuous spin reorientation in antiferromagnetic films

    Full text link
    We study anisotropic antiferromagnetic one-layer films with dipolar and nearest-neighbor exchange interactions. We obtain a unified phase diagram as a function of effective uniaxial D_e and quadrupolar C anisotropy constants. We study in some detail how spins reorient continuously below a temperature T_s as T and D_e vary.Comment: 3 LaTeX pages, 3 eps figures. Submitted to JMMM on 25 May 2006. Accepted on 21 July 200

    Direct visualization of dynamic magnetic coupling in a Co/Py bilayer with picosecond and nanometer resolution

    Full text link
    We present a combination of ferromagnetic resonance (FMR) with spatially and time-resolved X-ray absorption spectroscopy in a scanning transmission X-ray microscope (STXM-FMR). The transverse high frequency component of the resonantly excited magnetization is measured with element-specifity in a Permalloy (Py) disk - Cobalt (Co) stripe bilayer microstructure. STXM-FMR mappings are snapshots of the local magnetization-precession with nm spatial resolution and ps temporal resolution. We directly observe the transfer of angular momentum from Py to Co and vice versa at their respective element-specific resonances. A third resonance could be observed in our experiments, which is identified as a coupled resonance of Py and Co.Comment: Version submitted to Physical Review Applied with updated author list and supplemental information (Ancillary file
    • …
    corecore