447 research outputs found

    Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle

    Get PDF
    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease

    Role of the dopamine system in some models of experimental epilepsy

    Get PDF

    The potential of nanomedicine therapies to treat neovascular disease in the retina

    Get PDF
    Neovascular disease in the retina is the leading cause of blindness in all age groups. Thus, there is a great need to develop effective therapeutic agents to inhibit and prevent neovascularization in the retina. Over the past decade, anti-VEGF therapeutic agents have entered the clinic for the treatment of neovascular retinal disease, and these agents have been effective for slowing and preventing the progression of neovascularization. However, the therapeutic benefits of anti-VEGF therapy can be diminished by the need for prolonged treatment regimens of repeated intravitreal injections, which can lead to complications such as endophthalmitis, retinal tears, and retinal detachment. Recent advances in nanoparticle-based drug delivery systems offer the opportunity to improve bioactivity and prolong bioavailability of drugs in the retina to reduce the risks associated with treating neovascular disease. This article reviews recent advances in the development of nanoparticle-based drug delivery systems which could be utilized to improve the treatment of neovascular disease in the retina

    “PASSARINHEIROS” – UMA ETNOGRAFIA SOBRE PESSOAS & PÁSSAROS DA ILHA DE FLORIANÓPOLIS.

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina, Centro de Filosofia e CiĂȘncias Humanas, Curso de CiĂȘncias Sociais.O trabalho a seguir trĂĄs depoimentos e cenas de encontros com criadores de pĂĄssaros canoros em um documentĂĄrio gravado na Ilha de FlorianĂłpolis – Santa Catarina. PropĂ”e obter reflexĂ”es e conhecimentos sobre esta tradição atravĂ©s do ponto de vista e opiniĂ”es dos prĂłprios criadores, suas estĂłrias e experiĂȘncias sobre pĂĄssaros, e mostrando os espaços de convivĂȘncia entre eles.The following work brings testimony and scenes of encounters with breeders of singing birds in a documentary recorded on the Island of FlorianĂłpolis - Santa Catarina. It proposes to obtain reflections and knowledge on this tradition through the point of view and opinions of the breeders themselves, their stories and experiences about birds, and showing the spaces of coexistence between them

    Axillary Artery Pseudoaneurysm Following Percutaneous Transaxillary Access for Impella Device Placement during Percutaneous Coronary Intervention

    Get PDF
    Percutaneous transaxillary access is currently considered an acceptable alternative to transfemoral approach for large-bore access, especially in the setting of hostile iliofemoral arteries. Few published reports exist concerning complications of upper extremity access. We describe development of an axillary artery pseudoaneurysm and its management following transaxillary access. (Level of Difficulty: Advanced.

    A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Get PDF
    Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells) and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs)). Pigment epithelium-derived factor (PEDF) contains an N-terminal 34-amino acid peptide (PEDF-34) that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR) model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS). OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization

    Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles

    Get PDF
    BACKGROUND: The eye is an excellent candidate for gene therapy as it is immune privileged and much of the disease-causing genetics are well understood. Towards this goal, we evaluated the efficiency of compacted DNA nanoparticles as a system for non-viral gene transfer to ocular tissues. The compacted DNA nanoparticles examined here have been shown to be safe and effective in a human clinical trial, have no theoretical limitation on plasmid size, do not provoke immune responses, and can be highly concentrated. METHODS AND FINDINGS: Here we show that these nanoparticles can be targeted to different tissues within the eye by varying the site of injection. Almost all cell types of the eye were capable of transfection by the nanoparticle and produced robust levels of gene expression that were dose-dependent. Most impressively, subretinal delivery of these nanoparticles transfected nearly all of the photoreceptor population and produced expression levels almost equal to that of rod opsin, the highest expressed gene in the retina. CONCLUSIONS: As no deleterious effects on retinal function were observed, this treatment strategy appears to be clinically viable and provides a highly efficient non-viral technology to safely deliver and express nucleic acids in the retina and other ocular tissues

    Annotation and analysis of 10,000 expressed sequence tags from developing mouse eye and adult retina

    Full text link
    Abstract Background As a biomarker of cellular activities, the transcriptome of a specific tissue or cell type during development and disease is of great biomedical interest. We have generated and analyzed 10,000 expressed sequence tags (ESTs) from three mouse eye tissue cDNA libraries: embryonic day 15.5 (M15E) eye, postnatal day 2 (M2PN) eye and adult retina (MRA). Results Annotation of 8,633 non-mitochondrial and non-ribosomal high-quality ESTs revealed that 57% of the sequences represent known genes and 43% are unknown or novel ESTs, with M15E having the highest percentage of novel ESTs. Of these, 2,361 ESTs correspond to 747 unique genes and the remaining 6,272 are represented only once. Phototransduction genes are preferentially identified in MRA, whereas transcripts for cell structure and regulatory proteins are highly expressed in the developing eye. Map locations of human orthologs of known genes uncovered a high density of ocular genes on chromosome 17, and identified 277 genes in the critical regions of 37 retinal disease loci. In silico expression profiling identified 210 genes and/or ESTs over-expressed in the eye; of these, more than 26 are known to have vital retinal function. Comparisons between libraries provided a list of temporally regulated genes and/or ESTs. A few of these were validated by qRT-PCR analysis. Conclusions Our studies present a large number of potentially interesting genes for biological investigation, and the annotated EST set provides a useful resource for microarray and functional genomic studies.http://deepblue.lib.umich.edu/bitstream/2027.42/112906/1/13059_2003_Article_574.pd

    Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition

    Get PDF
    The in situ control of redox insult in human organs is of major clinical relevance, yet remains incompletely understood. Activation of Nrf2, the “master regulator” of genes controlling cellular redox homeostasis, is advocated as a therapeutic strategy for diseases with severely impaired redox balance. It remains to be shown whether this strategy is effective in human organs, rather than isolated human cell types. We have therefore explored the role of Nrf2 in a uniquely accessible human (mini-) organ, human scalp hair follicles (HFs). Microarray and qPCR analysis of human HFs following Nrf2 activation using sulforaphane identified the modulation of phase II metabolism, ROS clearance, the pentose phosphate pathway and glutathione homeostasis. Nrf2 knockdown (siRNA) in cultured human HFs confirmed the regulation of key Nrf2 target genes (i.e. HO-1, NQO1, GSR, GCLC, ABCC1, PRDX1). Importantly, Nrf2 activation significantly reduced ROS levels and associated lipid peroxidation. Nrf2 pre-activation reduced oxidative stress-stimulated (H2O2 or menadione) premature catagen and hair growth inhibition, significantly ameliorated the H2O2-dependent increase in matrix keratinocyte apoptosis and reversed the ROS-induced reduction in proliferation. This study thus provides direct evidence for the crucial role of Nrf2 in protecting human organ function (i.e. scalp HFs) against redox insult
    • 

    corecore