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 Crystallins constitute a diverse group of proteins that are
expressed at high concentrations in the differentiated lens fi-
ber cells and augment the refractive power of the transparent
lens tissue [1,2]. In vertebrates, three major classes of
crystallins, α, β, and γ, accumulate in the lens in a spatially
and temporally regulated manner [3-5]. Their expression in-
creases dramatically during differentiation of lens epithelial
cells into fibers [1]. The two α-crystallins (αA and αB) be-
long to the small heat shock protein family of molecular chap-
erones and appear very early during mouse embryonic devel-
opment [6,7]. Members of the β/γ-superfamily, which include
β-crystallins (βA1/A3, βA2, βA4, βB1, βB2 and βB3) and γ-
crystallins (γA-F, and γS, formerly βS), are related to micro-
bial proteins induced by physiological stress [8,9]. In addi-

tion, a growing number of crystallins (known as taxon-spe-
cific enzyme-crystallins) are expressed at relatively high lev-
els in the lens but only in selected species; these proteins in-
clude µ, ζand λ-crystallins that are closely related to meta-
bolic enzymes ornithine cyclodeaminase, NADPH:quinone
oxidoreductase and hydroxyl CoA dehydrogenase, respectively
[3,10].

Originally considered to be static, abundant proteins pro-
viding transparency to the lens, it is now generally accepted
that crystallins were selected from proteins with entirely dif-
ferent non-lens roles and are retained in multiple tissues of
the same organism [6]. Bhat and colleagues were the first to
demonstrate the extra-lenticular expression of a crystallin [11].
Further studies revealed the presence of αB-crystallin in nu-
merous tissues and its increased accumulation in neurological
disorders [6,12-14]. Later, it was demonstrated that αA and
αB-crystallins have chaperone-like activity [15], are phospho-
rylated in vivo and possess autokinase activity [16,17], inter-
act with cytoskeleton [18], and protect cells from thermal and
metabolic stress [19]. Furthermore, their ability to prevent
apoptosis by inhibiting caspases indicates that αA and αB-
crystallins have more general physiological functions in non-
lens tissues [20].
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Purpose: Crystallins are expressed at high levels in lens fiber cells. Recent studies have revealed that several members of
the α, β, and γ-crystallin family are also distributed in many non-lens tissues, though at lower levels. We observed that the
use of retinal RNA as target for both custom I-Gene microarrays and Affymetrix GeneChips revealed significant expres-
sion of many crystallin genes. This prompted us to undertake a comprehensive investigation to delineate the baseline
expression of crystallin genes in the adult mouse retina.
Methods: Quantitative RT-PCR was carried out using gene specific primers (derived from the mouse genomic sequence)
for each crystallin gene. Immunofluorescence studies using frozen sections of the mouse retinas were performed with
crystallin-specific antibodies. Retinal lysates were analyzed by immunoblotting using antibodies specific to αA and αB
crystallins and those produced against total β-crystallin and γ-crystallin fractions of bovine lenses.
Results: Microarray analysis followed by quantitative RT-PCR revealed that mouse retinal cells express transcripts for 20
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Interestingly, our studies also showed a significant animal-to-animal variation in the expression level of some of the
crystallins.
Conclusions: Our results establish the expression of many crystallins in the adult mouse retina. Detection of crystallins in
the retinal nuclear layers, though surprising, is consistent with their proposed role in cell survival and genomic stability.
We suggest that crystallins play vital functions in protecting retinal neurons from damage by environmental and/or meta-
bolic stress.
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Retinal expression of crystallin genes was initially docu-
mented in the chicken [21]. Low levels of α-crystallin were
also detected in frog retinal photoreceptors (in post-golgi mem-
branes) and suggested to play a role in rhodopsin trafficking
[22]. Later, crystallin expression was demonstrated in the retina
of several species [23-29]. Furthermore, expression levels of
crystallins (αA, αB, several members of the β-crystallin fam-
ily and γS-crystallin) were shown to be modulated under stress
conditions [30-32]. Increased expression of several crystallin
genes in light damaged photoreceptors and the decreased ex-
pression of αA-crystallin in the retinal dystrophic rat suggested
a possible role of crystallins in protecting the photoreceptors
from light damage [30,31]. An intriguing recent finding is the
identification of crystallins as components of retinal drusen
isolated from human donor retinas of aging individuals and of
patients with age-related macular degeneration [30]. Although
detected in the retina and other tissues, functions of β, and γ-
crystallins remain unclear [28,29]. It has not been determined
whether α, β, and γ-crystallins have a specific role in the retina
or represent an adventitious form of expression, perhaps rudi-
ments of early interactions between the developing lens and
the optic vesicle [29].

Mice lacking αA (αA-/-) or αB (αB-/-) have provided con-
siderable insights into the functional roles of these proteins
[33,34]. For example, αA may be necessary for maintaining
the solubility of other crystallins in the lens. More broadly, α-
crystallins are suggested to enhance cell survival and genomic
integrity in lens epithelial cells [35-38]. The deletion of αA or
αB gene appears to have distinct effects [35,37]. The absence
of αA increases cell death in vivo during mitotic phase [38].
In contrast, deletion of αB-crystallin produced cells that have
a greater tendency to hyper-proliferate in culture, indicating a
possible role of αB in maintaining genomic stability [37].

Spatial profiling of crystallin transcripts and protein ex-
pression can provide an important tool to decipher the func-
tion of these proteins in the retina [39,40]. Recent efforts uti-
lizing functional genomics have identified the involvement of
crystallin gene families during aging and disease conditions
[40,41]. We therefore performed a comprehensive analysis of
crystallin gene and protein expression in the adult mouse retina.
Here we report extensive expression analysis of crystallins
using quantitative RT-PCR, followed by immunoblotting and
immunocytochemical analysis using several well-defined crys-
tallin antibodies.

METHODS
Isolation of retinas:  Retina samples for RNA and protein
analysis were dissected from adult C57BL/6 mice, snap fro-
zen and stored at -80 °C, in accordance with the Institutional
policies on the care and use of laboratory animals in research.
In addition, retinas were isolated from adult 129Sv strain of
mice. Mice lacking αA-crystallin (αA-/-) or αB-crystallin (αB-
/-) on a 129Sv background were generously provided by Dr.
Eric Wawrousek (National Eye Institute), and were used as
negative controls for expression of these proteins. Twelve to
thirteen week old mice were used in these studies. Retinas
were dissected between 3 and 4 PM (subjective midday).

Quantitative RT-PCR (qRT-PCR):  Gene specific prim-
ers (Table 1) were derived from murine genomic DNA se-
quences for crystallin genes (Ensembl database). For each
gene, a primer set was designed to amplify a 200-400 bp prod-
uct from the cDNA. Primer pairs spanned at least one intron
so that the amplification due to genomic DNA contamination
could be detected as it would produce a larger amplicon of
>800 bp. The qRT-PCR analysis was performed using iCycler
optical detection system (Bio-Rad) to measure fluoresence
produced by SYBR Green I dye (Molecular Probes, Eugene,
OR) intercalating into PCR product. Pairs of retina from seven
10 week old wild-type mice were dissected; four of these were
pooled, and the other three were processed separately. Total
RNA was prepared using the Trizol reagent (Invitrogen), and
the cDNA template was generated using the Superscript sys-
tem (Invitrogen). PCR reactions for each gene were performed
in triplicate on each cDNA template along with triplicate re-
actions of a neuronal housekeeping gene, Hypoxanthine Gua-
nine Phosphoribosyl Transferase (Hprt). The integrity of PCR
reaction was verified by melt-curve analysis and agarose gel
electrophoresis. The threshold cycle (Ct) difference between
Hprt and each crystallin gene was calculated. Each crystallin
gene was tested in triplicate on a given RNA sample. On the
same 96 well plate, Hprt was also tested in triplicate on the
same RNA sample. Each set of triplicates yielded three Ct
values. These Ct values were averaged and the difference be-
tween the Hprt Ct (Avg) and Crystallin gene Ct (Avg) was
calculated (Ct-diff). Each crystallin gene (and Hprt controls)
were tested using four RNA samples to determine the Ct-diff.
Three of these samples were total RNA isolated from pairs of
retinas from different mice and a fourth sample consisted of
total RNA isolated from a pool of 8 mouse retinas. The four
resultant Ct-diff values were averaged in order to calculate
the reported fold change from Hprt. Each difference of 1 cycle
corresponds to a 2-fold change in expression between Hprt
and a particular crystallin gene assuming 100% reaction effi-
ciency.

Immunofluorescence:  Cryosections (10 µm) of adult
mouse eye were probed with antibodies against bovine αA,
αB, the βH-crystallin fraction and the total γ-crystallin frac-
tion. The distribution of these proteins was analyzed by im-
munofluorescence and confocal microscopy. For αA-crystal-
lin, a 1:20 dilution of a monoclonal antibody against bovine
αA was used (kindly provided by Dr. Paul Fitzgerald). For
αB, a 1:200 dilution of a polyclonal antibody raised against
bovine αB (Novocastra Laboratories) was used. Both primary
antibodies showed high specificity and gave low background
in immunocytochemistry with αA-/- and αB-/- mouse lens slices,
respectively [35,37]. A monoclonal antibody raised against
the bovine βH-crystallin was used at 1: 200 dilution; this anti-
body recognizes the βB2 protein. A polyclonal antibody that
was raised against the bovine γ-crystallin fraction recognized
γB, γC and γD-crystallins [42] and was used at 1:200 dilution.
In each case, frozen eye sections were fixed for 10 min with
95% ethanol, hydrated and then blocked with 20% normal
donkey serum in PBS containing 0.1% Triton X-100, for 30
min. They were then incubated overnight at 4 °C with the pri-
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mary antibody. After three 10 min washes in PBS, the sec-
tions were blocked with 20% normal goat serum for 20 min,
and incubated with Alexa568-conjugated goat anti-mouse or
goat anti-rabbit IgG used as the secondary antibody at 1:300
dilution.

To demonstrate antibody-specificity, we examined retina
sections from αA-/- and αB-/- mouse eyes. In addition, we used
retina sections with no primary antibody added and with pri-
mary antibodies after antigen adsorption, as negative controls.

To visualize the nuclei, retinal sections were stained with
TOTO-1 (Molecular Probes). The sections were viewed using
Zeiss LSM 410 confocal microscope, equipped with an Ar-
gon-Krypton laser [35,37].

Immunoblot analysis.:  Retinas, harvested from 12.5 week
old mice, were lysed in 100 µl of lysis buffer (containing 40
mM Tris.Cl pH 7.5, 300 mM NaCl, 1% Triton X-100, 0.2%
deoxycholate, 2 mM PMSF, 0.2% SDS and protease inhibitor
cocktail [Sigma]) for 30 min at 4 °C. After sonication, the
lysates were centrifuged for 30 min, and the supernatant was
mixed with 30 µl of the SDS-PAGE sample buffer (5X) con-
taining 0.02 M Tris.Cl pH 6.8, 4% β-mercaptoethanol, 4 mg/
ml bromophenol blue, 5% SDS and 60% glycerol. A 15 µl
aliquot containing approximately 20 µg of detergent-soluble
retina protein was analyzed by SDS-PAGE using 15% gels
[35]. Proteins were transferred to PVDF membranes and
probed with primary antibodies to αA, αB, βH and γ-
crystallins, as described above. The secondary antibodies were
HRP-labeled anti-mouse or HRP-labeled anti-rabbit IgGs.
Blots were incubated with Luminol reagent (Santa Cruz Bio-
technology) and exposed to Kodak film to visualize the pro-
tein bands. Equal protein loading of retina lysates from differ-
ent animals was confirmed by reprobing blots with a mono-
clonal antibody to β-tubulin as a housekeeping gene. In these
analyses, α, β, and γ-crystallin fractions isolated by size-ex-
clusion chromatography from mouse, bovine or human lenses,
or mouse lens epithelial cell lysates derived from 5x104 cells
were used as controls. Protein concentration of the isolated
fractions of α, β, and γ-crystallin was determined based on

© 2003 Molecular VisionMolecular Vision 2003; 9:410-9 <http://www.molvis.org/molvis/v9/a53>

TABLE 1. GENE SPECIFIC PRIMERS FOR CRYSTALLINS USED IN RT-PCR

                 Ensembl
  Gene        Transcript ID          Forward Primer            Reverse Primer
---------   ------------------   ----------------------   ------------------------
Cryaa       ENSMUST00000014690   ACAACGAGAGGCAGGATGAC     AGGGGACAACCAAGGTGAG
Cryaa-Ins   ENSMUST00000019192   TAATGCACCAACCACATGCT     ACATTGGAAGGCAGACGGTA
Cryab       ENSMUST00000034562   GCGGTGAGCTGGGATAATAA     GCTTCACGTCCAGATTCACA
Crya-nov1   ENSMUST00000044048   CGTGCTTCAGCTCCTTTACC     GACAGGACACCCTCAGGAGA
Cryba1      ENSMUST00000000740   AACTTCCAGGGCAAGAGGAT     AGATGGGTCGGAAGGACAT
Cryba2      ENSMUST00000006721   GACACTGTTTGAGGGGGAAA     CCTGTGTGCCAAAGTCACTG
Cryba3      ENSMUST00000060665   TCCAACCACCAAGATGGCTCAG   ATCACAGATTTCCCACTGGCGTCC
Cryba4      ENSMUST00000031285   GGTGCGATCTCTCAAAGTCC     TGCAGAGAGGGATAGTCATCG
Crybb1      ENSMUST00000031286   CCTCTGGGTTTATGGCTTCT     AGCCCTCTTGGTGCCACT
Crybb2      ENSMUST00000031295   GGCTACGAGCAGGCTAATTG     CCTTGTAATCCCCCTTCTCC
Crybb3      ENSMUST00000031297   GAGGCAGAAGTATCCCCAGA     GGAGGGACAGGAGAATGTCA
Cryga       ENSMUST00000027088   CTCCTGCCGTTCCATTCCAT     GTCGTGGTAGCGCCTGTAGT
Crygc       ENSMUST00000027089   TGCTGCCTCATCCCCCAACA     TCGCCTAAAAGAGCCAACTT
Crygd       ENSMUST00000027091   TGCCGCCTCATCCCCCACGCCG   GTCGTGGTAGCGCCTGTACT
Cryge       ENSMUST00000045028   ACCCTGACTACCAGCAGTGG     GTCCAGATGGAGAAAATGGT
Crygf       ENSMUST00000027082   GTGGCTGCTGGATGCTCTAT     GCCTATACTCCCCTGGCCTC
Crygs       ENSMUST00000040592   TGCGGGAATCAACCTTTGC      GCCTTCTACCACCTTACAGGAATG
Crym        ENSMUST00000033198   CCTGAAGGAGTCAGGAGACG     GCCATCACCCCTTAACAGAA
Cryz        ENSMUST00000029850   GCGACAGGGTCTTCTGCTAC     TGTGCCCAAAACCTTTAAGC
CryL        ENSMUST00000022517   AGCTCTTGTCTGCTGCCTTC     TAGTCTCCAAGGGTCCGATG
Hprt        ENSMUST00000026723   CAAACTTTGCTTTCCCTGGT     CAAGGGCATATCCAACAACA

Primer pairs for each murine crystallin gene were designed using the
Primer3 software (version 0.2c) hosted at the Whitehead Institute
and based upon sequence information found in the Ensembl data-
base.

Figure 1. Assessment of retinal crystallin gene copy number by quan-
titative RT-PCR.  Four different mouse retinal samples were exam-
ined to determine the mean PCR cycle change from Hprt for each
crystallin gene. Three pairs of retinas isolated from different mice
(M1629, M2407, M2408) and a fourth sample consisting of 8 mouse
retinas (WT-Pool) were analyzed. Total RNA was extracted from these
samples and served as a template for reverse transcription. Primer
pairs were designed to flank introns so PCR amplicons produced
from a genomic DNA template could be detected. A cycle change of
(+1) from Hprt represents a hypothetical two-fold increase in the
mRNA abundance for that gene compared to Hprt mRNA expres-
sion levels. Every sequential increase of (+1) would represent a fur-
ther two-fold increase in abundance of that specific transcript as-
suming 100% reaction efficiency in the RT-PCR. Data for α, β, γ,
and other (µ, ζ, λ) crystallin gene members is are shown in panels A,
B, C, and D, respectively.

TABLE 2. RETINAL CRYSTALLIN TRANSCRIPT LEVELS RELATIVE TO

HPRT

                           Mean difference of
                          cycle threshold from   Fold difference from
         Gene                 Hprt (±SEM)            Hprt (Range)
-----------------------   --------------------   --------------------
Alpha-A-Crystallin             2.76 ± 0.45            5.4 /     8.1
Alpha-A-INS-Crystallin         0.33 ± 0.27            0.1 /     2.5
Alpha-B-Crystallin           -12.09 ± 0.29        -4355.3 / -4352.8
Alpha-A-Crystallin-nov1       -6.15 ± 0.44          -72.2 /   -69.5
Beta-A1-Crystallin             0.86 ± 0.36            0.5 /     3.1
Beta-A2-Crystallin             1.40 ± 0.14            1.5 /     3.7
Beta-A3-Crystallin             2.01 ± 0.32            2.8 /     5.3
Beta-A4-Crystallin             0.35 ± 0.37            0   /     2.6
Beta-B1-Crystallin            -3.03 ± 0.26           -9.4 /    -7
Beta-B2-Crystallin             0.39 ± 1.18           -1   /     3.6
Beta-B3-Crystallin            -1.26 ± 0.71           -4   /    -0.8
Gamma-A-Crystallin            -5.80 ± 1.07          -58   /   -53.8
Gamma-C-Crystallin             0.71 ± 1.17           -0.6 /     3.9
Gamma-D-Crystallin             0.86 ± 1.15           -0.4 /     4.0
Gamma-E-Crystallin            -5.28 ± 2.65          -45.1 /   -32.5
Gamma-F-Crystallin            -6.17 ± 2.22          -76.5 /   -67.2
Gamma-S-Crystallin           -10.52 ± 0.39        -1470.7 / -1468
Mu-Crystallin                 -7.47 ± 0.70         -178.8 /  -175.5
Zeta-Crystallin               -5.83 ± 0.15          -58   /    55.8
Lambda-Crystallin             -8.30 ± 0.40         -317.4 /  -314.7

Quantitative analysis of crystallin transcripts in the retina by qRT-
PCR. Hprt expression was used to normalize the expression levels.
For each crystallin transcript, triplicate reactions were performed on
four different total RNA samples. The hypothetical value of
2cycle threshold difference (100% reaction efficiency assumed) was used in
calculating the fold difference from Hprt.
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aromatic amino acid compositions [43,44]. Quantitative
immunoblot analysis was carried out by SDS-PAGE of vary-
ing concentrations of lens α, β, and γ-crystallins using well-
characterized antibodies. These analyses indicated that αA-
crystallin had higher expression in retina than αB-crystallin.
Detergent-insoluble fractions of retinal lysates were also ana-
lyzed.

RESULTS
Expression of crystallin transcripts in the mouse retina:  While
generating gene expression profiles by custom eye-gene ar-
rays [40,41] or Affymetrix GeneChips (Yoshida and Swaroop,
unpublished data), we discovered an abundance of transcrip-
tion of crystallin family genes in the retina. α, β, and γ-
Crystallins are the major components of vertebrate lenses and

are related to molecular chaperones and bacterial stress pro-
teins [4,6,8]. Though expression of some of the crystallins has
been shown in the retina, a comprehensive gene and protein
expression profile of crystallins is not yet reported. We there-
fore employed real-time RT-PCR (quantitative RT-PCR; qRT-
PCR) to examine the expression of all known crystallin genes
in the retina.

We amplified the transcripts for 20 different crystallin
family genes, which include a previously unreported, novel
member of the αA-crystallin family termed αA-nov1 (Ensembl
Transcript ID ENSMUST00000044048), three known genes
of the α-crystallin family, thirteen genes of the β/γ-crystallin
superfamily, and the taxon-specific µ, λand ζ-crystallin genes.
Sequence and transcript information for each crystallin gene
was obtained by querying the Ensembl Mouse Genome server

© 2003 Molecular VisionMolecular Vision 2003; 9:410-9 <http://www.molvis.org/molvis/v9/a53>

Figure 2. Expression of αA-crystallin in mouse retinas.  Expression of αA-crystallin in adult mouse retinas by immunoblotting and immunof-
luorescence. Immunoblot analysis. (A) Cell lysates were prepared from 12.5 week old retinas and analyzed by SDS-PAGE and immunoblotting.
A 20 µg aliquot of the retinal protein was applied to the gel. The monoclonal antibody against bovine αA-crystallin was used. Lanes are: left
and middle, mouse retinas of two different animals; right, mouse lens epithelial cells (5x104, corresponding to 0.3 µg of αA-crystallin). Note
the significant variability in expression of αA-crystallin in retina derived from two animals of the same litter. Note also that the αA- and αA-
insert proteins from the retinas had the same mobility as the proteins from lens epithelial cells. Immunofluorescence. (B) αA-crystallin (red)
was localized using an antibody to αA-crystallin, and nuclei (green) were stained with TOTO-1. Cellular morphology was visualized with
differential interference contrast (DIC). Note that αA-crystallin was distributed in the ganglion cell layer, inner photoreceptor layer, and outer
nuclear layer (B). A higher magnification of αA-crystallin distribution in the inner and outer nuclear layers of the retina is shown in (C). Note
that αA-crystallin distribution was restricted to the membranes of the outer nuclear layers, but it is also distributed in the structures within the
nucleus of the inner nuclear layer. A high magnification image of TOTO-1 immunofluorescence of the nuclei shown in (C) is shown in (D). A
DIC image of an αA-/- retina (negative control) is shown in (E). No αA-crystallin immunofluorescence was detectable in the αA-/- mouse
retina. Bar represents 13 µm (B, E, F); 5 µm (C,D). RPE, retinal pigment epithelium; ROS, rod outer segments; RIS, rod inner segments;
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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hosted at The Sanger Institute. Since much homology is shared
among members of the various crystallin families, PCR prim-
ers were designed in non-homologous regions and reaction
fidelity was verified by DNA sequencing.

Figure 1 shows the cycle threshold difference compared
to Hprt obtained with gene specific primers (Table 1) for vari-
ous crystallin genes, depicting the relative expression of the
transcript for each crystallin. A summary of the expression of
transcripts for various crystallins, relative to the enzyme Hprt
(used here as a reference) is provided in Table 2. The relative
amounts of αA and αB-crystallin transcripts can be determined
by the data presented in Table 2. For example, αA-crystallin
has a cycle threshold difference from Hprt of (+2.76) and αB
crystallin has a cycle threshold difference from Hprt of (-

12.09). Hence, αA-crystallin appears +14.85 cycles (+2.76 to
-12.09) before αB-crystallin, corresponding to a 29,532
(=214.85) fold higher expression of the αA-crystallin transcript
than αB-crystallin in the retina. This calculation could be ap-
plied to determine relative transcript amounts for any of the
crystallin genes reported in this table, assuming 100% reac-
tion efficiency.

Expression of crystallin proteins in the mouse retina:  αA-
crystallin: In the lens, αA-crystallin represents the major pro-
tein of the α-crystallin gene family and is known to act as a
molecular chaperone [15]. αA-/- mice have reduced lens size
and αA-/- lens epithelial cells demonstrate slower growth
[33,35]. Since αA-crystallin transcripts were detected by
microarray analysis and qRT-PCR, we tested for the presence
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Figure 3. Expression of αB-crystallin in mouse retinas.  Expression of αB-crystallin in adult mouse retinas by immunoblotting and immunof-
luorescence. Immunoblot analysis. (A) Cell lysates were prepared from 12.5 week old retinas and analyzed by SDS-PAGE and immunoblotting.
A 20 µg aliquot of the retinal protein was applied to the gel. A polyclonal antibody against bovine αB-crystallin was used. Lanes are: left and
middle, mouse retinas of two different animals; right, human lens αB-crystallin (0.1 µg). Note the significant variability of expression of αB-
crystallin in retina derived from two animals of the same litter. Immunofluorescence. (B) αB-crystallin (red) was localized using an antibody
to αB-crystallin. Cellular morphology was visualized with differential interference contrast. Note that αB-crystallin was distributed in the
ganglion cell layer, inner photoreceptor layer, and outer nuclear layer (B). Note also the punctate staining of αB in the photoreceptor inner
segments. A DIC image of an αB-/- retina (negative control) is shown in (C). In the αB-/- retina, there was no detectable αB-crystallin immu-
nofluorescence (D). Bar represents 13 µm (B-D).

414

A B

C D



of αA protein in the adult mouse retinas by immunoblotting
and immunolocalization studies (Figure 2). In retinal cell ly-
sates, a prominent band at the expected molecular weight of
approximately 20 kDa was detected (Figure 2A). This band
also was observed in the lens epithelial cell cultures derived
from adult mice. A second, higher molecular weight band at
approximately 24 kDa in retinal lysates probably represents
the αA-insert protein, a product of alternative splicing of the
mRNA [1]. The αA and αA-insert proteins from retinal cell
lysates had the same mobility as the proteins detected in mouse
lens epithelial cells. There was no cross-reactivity of the anti-
body with any other protein on the immunoblots. Significant
variation between αA-crystallin amounts was observed be-
tween retinas from different animals. For example, quantita-

tive immunoblot analysis of two different retinas (Figure 2A)
showed a difference of ten fold. For these two samples, the
amount of retina protein loaded was the same. Re-probing the
immunoblot with an antibody to β-tubulin as an internal load-
ing control confirmed equal protein loading for the two retina
samples (data not shown). The variations in expression were
evident for of all crystallins examined by immunoblot analy-
sis. This variability in expression was not due to a redistribu-
tion of crystallin to the detergent-insoluble cytoskeletal/mem-
brane fraction of the retina, since these fractions showed a
parallel variability (data not shown). The expression of αA-
crystallin in retinas was lower than that in the lens, where αA
and αB-crystallin together account for nearly 40% of the total
water-soluble protein [15].

© 2003 Molecular VisionMolecular Vision 2003; 9:410-9 <http://www.molvis.org/molvis/v9/a53>

Figure 4. Expression of β-crystallin in mouse retinas.  Expression of β-crystallin in adult mouse retinas by immunoblotting and immunofluo-
rescence. Immunoblot analysis. (A) Cell lysates were prepared from 12.5 week old retinas and analyzed by SDS-PAGE and immunoblotting.
A 20 µg aliquot of the retinal protein was applied to the gel. A monoclonal antibody against the bovine βH-crystallin fraction was used. Lanes
are: left and middle, mouse retinas of two different animals; right, bovine lens βH-crystallin (1 µg). Note the significant variability of expres-
sion of β-crystallin in retina derived from two animals of the same litter. Immunofluorescence. (B) β-crystallin (red) was localized using a
monoclonal antibody against bovine βH-crystallin fraction. Note that β-crystallin was distributed in the ganglion cell layer, inner photorecep-
tor layer, and outer nuclear layer. Note also the prominent punctate staining of β-crystallin in the photoreceptor inner segments. Cellular
morphology was visualized with differential interference contrast. A DIC image of a normal retina is shown in (C). Pre-adsorption of the
primary antibody with bovine βH-crystallin protein (negative control) showed no detectable β-crystallin immunofluorescence (D) in the retina
shown in (C). Bar represents 13 µm (B-D).
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The distribution of αA-crystallin in different cell layers
of the retina was visualized by immunofluorescence and con-
focal microscopy. Dual staining with the αA antibody (shown
in red) and the DNA stain TOTO-1 (green) was performed. As
shown in Figure 2B, αA was distributed in the ganglion cell
layer nuclei, and the inner and outer photoreceptor nuclear
layers. Interestingly, αA was undetectable in photoreceptor
inner and outer segments. Higher magnification images of the
αA immunofluorescence (Figure 2C) and nuclei (Figure 2D)
showed that the distribution of αA in the inner and outer nuclear
layers was distinctive. In the inner nuclear layer, it appeared
to label membranes and other cytoskeletal structures, whereas
in the outer nuclear layer, αA distribution was restricted to the
nuclear membranes. αA immunofluorescence was undetect-
able in the αA-/- retinas (Figure 2E,F), confirming the speci-
ficity of the antibody.

αB-crystallin: In the lens, α-crystallin exists as a high
molecular weight complex of two polypeptides, αA and αB
in 3:1 stoichiometry [15]. Because αA can influence the dis-
tribution of αB in the lens [33], and since αB transcripts were
also detected by microarray analysis and qRT-PCR, we tested
for the presence of αB in mouse retinas. αB was detected as a
single immunoreactive band in retina lysates, and migrated at
the same position as αB isolated from the lens (Figure 3A).
Variability of expression of αB-crystallin was observed among
different retinas examined. Figure 3A shows an immunoblot
analysis of retinal cell lysates from two different animals hav-
ing a five-fold difference in expression. The amount of retinal
protein applied to the gel was the same. Quantitative
immunoblot analysis showed that the amount of αB-crystal-
lin was 15 to 30 fold lower than that of αA-crystallin.
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Figure 5. Expression of γ-crystallin in mouse retinas.  Expression of γ-crystallin in adult mouse retinas by immunoblotting and immunofluo-
rescence. Immunoblot analysis. (A) Cell lysates were prepared from 12.5 week old retinas and analyzed by SDS-PAGE and immunoblotting.
A polyclonal antibody against bovine γ-crystallin fraction was used. Lanes are: left and middle, mouse retina; right, bovine lens γ-crystallin
(0.7 µg). Note the significant variability of expression of γ-crystallin in retina derived from two animals of the same litter. Immunofluores-
cence (B) γ-crystallin (red) was localized using a polyclonal antibody against bovine γ-crystallin fraction. Note that γ-crystallin was distrib-
uted in the ganglion cell layer, inner photoreceptor layer, and outer nuclear layer. Cellular morphology was visualized with differential inter-
ference contrast. A DIC image of a normal retina is shown in (C). Pre-adsorption of the primary antibody with bovine γ-crystallin protein
(negative control) showed no detectable γ-crystallin immunofluorescence (D) in the retina shown in (C). Bar represents 13 µm (B-D).
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The distribution of αB-crystallin in different cell layers
of the retina is shown in Figure 3B. Interestingly, αB was also
distributed in the same cell layers of the mouse retina as αA,
but in addition to its detection in the ganglion cell nuclei, and
the inner and outer nuclear layers of the photoreceptor cells,
some αB was also detected in the inner segments of photore-
ceptors. αB immunofluorescence was undetectable in retinas
of αB-/- mice, confirming the specificity of the antibody (Fig-
ure 3C,D).

β-crystallins: These proteins exist as oligomeric com-
plexes of several polypeptides. Two major fractions, βH and
βL, can be isolated from bovine lenses by size exclusion gel
chromatography, whereas human lenses contain β1, β2, and
β3 fractions [45,46]. The β-crystallin fractions are complex
and contain a number of peptides of variable stoichiometry.
Immunoblotting of cell lysates from adult mouse retinas
showed a single band at approximately 25 kDa co-migrating
with the protein recognized by a monoclonal antibody to bo-
vine lens βH-crystallin (Figure 4A). As in the case of αA and
αB-crystallin, immunoblot analysis of retinas from different
animals showed a wide range of β-crystallin expression. Fig-
ure 4A shows that retinas isolated from two different animals
had a ten-fold difference in expression of β-crystallin. The
amount of retina protein applied to the immunoblot was the
same for these two samples.

Immunofluorescence analysis showed that like αB, the
β-crystallin proteins were detected in all nuclear layers of the
retina (Figure 4B), and interestingly, they also were promi-
nently detected in the inner segments of the photoreceptor cells.
No β-crystallin immunofluorescence was detected in the retina
after pre-adsorption of the primary antibody with bovine β-
crystallin protein (Figure 4C,D).

γ-crystallins: These are monomeric proteins present in
lens and belong to the β/γsuperfamily of vertebrate crystallins.
Crystallographic analysis has demonstrated the presence of a
two-domain structure with four Greek key motifs that are re-
lated to bacterial stress proteins [5,8]. The presence of the γ-
crystallin family has been demonstrated in 10-20 day old mouse
retinas [29]. In our work, the transcripts for these crystallins
were detected by qRT-PCR analysis of adult mouse retinas.
Using an antibody that recognizes γB, C, and D family mem-
bers, we investigated the expression of these crystallins in the
adult mouse retinas. Immunoblot analysis demonstrated the
expression of three closely spaced immunoreactive bands A
(Figure 5A). The bovine lens γ-crystallin fraction was used as
a positive control, and co-migrated with the γ-crystallin from
mouse retinas. The minor bands migrating above and below
the purified γ-crystallin are most likely due to slight degrada-
tion and crosslinking of the retina sample. Variability of retina
expression was also observed in the case of γ-crystallin from
different animals, as shown in Figure 5A.

Immunofluorescence studies showed that γ-crystallin was
distributed in all the nuclear layers of the retina (Figure 5B).
No γ-crystallin immunofluorescence was detected in the retina
after pre-adsorption of the primary antibody with bovine γ-
crystallin protein (Figure 5C,D).

DISCUSSION
 Crystallins, previously thought to be components of only the
lens, have come under intense scrutiny because of their pos-
sible function as chaperones or stress-response proteins. While
all vertebrate lenses contain representatives of α, β, and γ-
crystallins, some species or select taxonomic groups also ex-
press entirely different proteins as lens crystallins, such as the
µ, ζ, and λcrystallins [1-3]. Several reports have identified
the expression of one or more of these crystallins in the retina
[21-29], and suggested significant environmental effects on
their expression, including circadian, diabetes, aging, and in-
tense light [30,31,41,47,48]. To our knowledge, this is the first
comprehensive report providing evidence for the presence of
crystallin gene transcripts (including several previously unre-
ported crystallin family genes that were identified by in silico
mining of genomic sequences) in the adult mouse retinas. The
transcript analysis suggests that some genes are highly ex-
pressed (e.g., αA-crystallin), whereas others are minor (e.g.,
γS- and λ-crystallin), and their significance is not known. Our
studies also demonstrate the spatial distribution of various
crystallins using specific antibodies.

Immunoblotting studies confirmed the expression of α,
β, and γ-crystallins and immunofluorescence data indicated
that each of the crystallin antibodies recognizes antigens lo-
calized in the nuclear layers of the retina. Only αB and β-
crystallin were also detected in the photoreceptor inner seg-
ments. Though a few studies have reported αB-crystallin in
photoreceptors and pigment epithelium [31] and γ-crystallin
in photoreceptors and ganglion cell layers [29], our study dem-
onstrates for the first time that the major vertebrate crystallins
are primarily distributed in the nuclear layers of the adult mouse
retina, and their pattern of expression is significantly different
between the inner and outer nuclear layers.

The delineation of precise functions for α, β, and γ-
crystallins in the retina requires further study. However, our
results showing the localization of αA, αB, β, and γ-crystallins
in the retinal nuclear layers is significant from two perspec-
tives. First, αA and αB-crystallin prevent aggregation of par-
tially denatured proteins, and have been suggested to play a
role in cell proliferation and genomic stability [15,35,37,49,50].
A similar role is possible in the retina. Second, the ability of
αA and αB-crystallins to prevent apoptosis [20,36], their in
vivo phosphorylation [16], association with membranes [51,52]
and cytoskeletal elements [18] and possible association with
signal transduction pathways [17], and increased expression
of αB in many diseased states [6], suggest the possibility that
the crystallins may have a protective function in retinal cells.
Since increased apoptosis of retinal photoreceptor and inner
nuclear layers has been associated with retinal and macular
degeneration [53], it would be interesting to determine the
correlation between retinal degeneration and crystallin expres-
sion.

α-Crystallins are small heat shock proteins that act as mo-
lecular chaperones, and are distinguished from other chaper-
one families, such as HSP60 and 70, by their high capacity to
bind non-native protein and their lack of ATP consumption,
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making them an efficient defense mechanism under stress
conditions [15,49]. A number of crystallin genes are activated
by Pax-6, a conserved transcription factor for eye evolution
[54]. αA and αB-crystallins are also differentially regulated
at the transcriptional level and there is a marked specializa-
tion of the αA-crystallin gene promoter for expression in lens.
The αB-crystallin gene has a very complex pattern of expres-
sion, in heart, lung, kidney, brain, eye and other tissues [6].

A noteworthy observation in the present work is the varia-
tions in the level of some of the crystallin RNA (Figure 1) and
protein (Figure 2, Figure 3, Figure 4, and Figure 5) expression
between individual animals of the same litter. Normal varia-
tions in the expression of various crystallin genes may be re-
flective of the stress level, metabolic status, and/or age of these
animals. This variability in expression suggests that crystallin
expression might be a sensitive indicator of metabolic status
or stress response. We suggest that data on changes in crystal-
lin expression should be interpreted cautiously and multiple
data points should be obtained.

The role of α-crystallins as molecular chaperones and their
ability to prevent the non-specific aggregation of denatured
proteins have been well established. However, much less is
known about the cellular functions of β/γ-crystallins, though
they share structural characteristics and high intrinsic stabil-
ity with microbial stress proteins [8]. Our studies are consis-
tent with the hypothesis that αA and αB-crystallins, in addi-
tion to being molecular chaperones, may be involved in fun-
damental processes such as genomic stability. This report pro-
vides a basis for future studies on crystallins in the normal
and diseased retinas. Changes in their expression and distri-
bution with aging, retinal dystrophies, diabetes, and macular
degeneration may possibly provide a direction for future thera-
pies for blinding eye diseases.
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