245 research outputs found

    Search for invisible Higgs bosons produced via vector boson fusion at the LHC using the ATLAS detector

    Full text link
    Despite dark matter abundance, its nature remains elusive. Many searches of dark matter particles are carried out using different technologies either via direct detection, indirect detection, or collider searches. In this work, the invisible Higgs sector was investigated, where Higgs bosons are produced via the vector boson fusion (VBF) process and subsequently decay into invisible particles. The hypothesis under consideration is that the Higgs boson might decay into a pair of weakly interacting massive particles (WIMPs), which are candidates for dark matter. The observed number of events are found to be in agreement with the background expectation from Standard Model (SM). Assuming a 125 GeV Higgs boson with SM production cross section, the observed and expected upper limits on the branching fraction of its decay into invisible particles are found to be 0.13 at 95\% confidence level. Combination of searches for an invisibly decaying Higgs boson produced via the main Higgs production modes at the LHC using 2011-2018 data is conducted and discussed.Comment: Submitted to the Proceedings of the African Conference on Fundamental and Applied Physics Second Edition, ACP2021, March 7-11, 202

    Spanish ATLAS tier-2: Facing up to LHC Run 2

    Full text link
    The goal of this work is to describe the way of addressing the main challenges of Run 2 by the Spanish ATLAS Tier-2. The considerable increase of energy and luminosity for the upcoming Run 2 with respect to Run 1 has led to a revision of the ATLAS computing model as well as some of the main ATLAS computing tools. In this paper, the adaptation to these changes will be described. The Spanish ATLAS Tier-2 is a R&D project which consists of a distributed infrastructure composed of three sites and its members are involved in ATLAS computing progress, namely the work in different tasks and the development of new tools (e.g. Event Index)This work has been supported by MINECO, Spain (Proj. Ref. FPA2010-21919-C03-01,02,03 & FPA2013-47424-C3,01,02,03), which include FEDER funds from the European Unio

    ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at root s=7 TeV

    Get PDF
    The ATLAS detector at the LHC is used to search for high-mass states, such as heavy charged gauge bosons (W'), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.7 fb(-1). No excess beyond Standard Model expectations is observed. A W' with Sequential Standard Model couplings is excluded at the 95 % credibility level for masses up to 2.55 TeV. Excited chiral bosons (W*) with equivalent coupling strength are excluded for masses up to 2.42 TeV

    Dynamics of isolated-photon plus jet production in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb(-1). Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon jet invariant mass and the scattering angle in the photon jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle

    Measurement of the cross-section for W boson production in association with b-jets in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of the W+b-jets (W+b+X and W+b (b) over bar +X) production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb(-1), collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with the next-to-leading order QCD prediction, corrected for non-perturbative and double-parton interactions (DPI) contributions, of 4.70 +/- 0.09 (stat) (+0.60)(-0.49) (scale) +/- 0.06 (PDF) +/- 0.16 (non-pert) (+0.52)(-0.38) (DPI) pb

    Triggers for displaced decays of long-lived neutral particles in the ATLAS detector

    Get PDF
    A set of three dedicated triggers designed to detect long-lived neutral particles decaying throughout the ATLAS detector to a pair of hadronic jets is described. The efficiencies of the triggers for selecting displaced decays as a function of the decay position are presented for simulated events. The effect of pile-up interactions on the trigger efficiencies and the dependence of the trigger rate on instantaneous luminosity during the 2012 data-taking period at the LHC are discussed

    Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector

    Get PDF
    A search for new phenomena in events with a high-energy jet and large missing transverse momentum is performed using data from proton-proton collisions at root s = 7 TeV with the ATLAS experiment at the Large flatiron Collider. Four kinematic regions are explored using a dataset corresponding to an integrated luminosity of 4.7 fb(-1). No excess of events beyond expectations from Standard Model processes is observed, and limits are set on large extra dimensions and the pair production of dark matter particles

    ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at root s=7 TeV

    Get PDF
    Mass and angular distributions of dijets produced in LHC proton-proton collisions at a centre-of-mass energy root s = 7TeV have been studied with the ATLAS detector using the full 2011 data set with an integrated luminosity of 4.8 fb(-1). Dijet masses up to similar to 4.0TeV have been probed. No resonance-like features have been observed in the dijet mass spectrum, and all angular distributions are consistent with the predictions of QCD. Exclusion limits on six hypotheses of new phenomena have been set at 95% CL in terms of mass or energy scale, as appropriate. These hypotheses include excited quarks below 2.83 TeV, colour octet scalars below 1.86TeV, heavy W bosons below 1.68 TeV, string resonances below 3.61 TeV, quantum black holes with six extra space-time dimensions for quantum gravity scales below 4.11 TeV, and quark contact interactions below a compositeness scale of 7.6 TeV in a destructive interference scenario

    Measurement of the flavour composition of dijet events in pp collisions at √s =7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at root s = 7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb(-1). Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity vertical bar y vertical bar < 2.1. The fit results agree with the predictions of leading-and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e. g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
    corecore