99 research outputs found

    Fuzzy super twisting algorithm dual direct torque control of doubly fed induction machine

    Get PDF
    This paper proposes the fundamental aspects of hybrid nonlinear control which is composed of the super twisting algorithm (STA) based second order sliding mode control applying fuzzy logic method (FSOSMC), with pertinent simulation results for a doubly fed induction machine (DFIM) drive. To minimize chattering effect phenomenon due to Signum function employed in sliding mode algorithm, a new method is proposed. This technique consists in replacing the signum function by fuzzy switching function in the SOSMC to minimize flux and torque ripples. This FSOSMC is associated to the double direct torque control DDTC of the doubly fed induction machine (DFIM) by combining the advantages of fuzzy logic (FL) and the advantages of super-twisting sliding mode. The FSOSMC-DDTC strategy is compared with a PI-DDTC and SOSMC-DDTC. Simulation results demonstrate good efficiency and excellent robustness of the hybrid nonlinear controller

    Design approach for the integration of services in buildings

    Get PDF
    This paper describes a novel methodology to group building services (BSs) into a single trunking system at minimal proximal distances between them. The study focused on solving the geometrical complexity encountered in conventional arrangements of BSs, while taking into account thermophysical and electromagnetic interactions between services together with building regulations. The potential solution for delivery and distribution of BSs in any number of directions is an ‟onion layers„ type of design, using novel mathematical manipulations based on manifolds of spherical and cylindrical geometries joined using Bezier surfaces. Computer Aided Design iterations were undertaken for channelling six BSs into a single unit including water, air, electricity and data. It consists of concentric cylindrical-spherical shells superimposed at few millimetres gaps (channels) for which physical prototypes were produced

    Design methodology for integrating multipath systems (building services)

    Get PDF
    Purpose – The purpose of this paper is to report on a geometrical integration methodology that can be used to organise some types of these systems. Most multipath delivery systems, such as Building Services (BSs), are arbitrarily distributed with no known solution to reduce the complexity in the way channels are arranged. Design/methodology/approach – Integration for optimal functionality through reduction of geometrical complexity is achieved by understanding the elements of complexity within current practices; identifying commonalities between the various components which can be used for integration; performing an axiomatic design to resolve design complications; adopting theory of inventive problem-solving for methodology and process development towards optimal functionality; and generating a mathematical solution to inform digital modelling of optimal design. The study takes into account thermophysical and electromagnetic interactions between utilities and uses novel mathematical manipulations based on designing a manifold of spherical and cylindrical geometries joined using Bezier surfaces. Findings – Once a solution was reached, computer-aided design (CAD) iterations were undertaken for channelling six BSs into a single unit. The outcome was concentric cylindrical–spherical shells superimposed with spacings of typically few millimetres to deliver/distribute the utilities. It is applied to bring together BSs into a single trunking system at minimal, yet appropriate, proximal distances, and it allows distribution of any number of services in any direction. Physical prototypes were produced and initial testing of their performance (reported elsewhere) has been encouraging. Originality/value – A design methodology for integrating arbitrary distributed paths/conduits. The approach could be incorporated into CAD tools as a design feature to facilitate integration of multipath delivery systems

    BIM enabled building energy modelling: development and verification of a GBXML to IDF conversion method

    Get PDF
    As part of the Design4Energy retrofit scenario a methodology is developed that uses Building Information Modelling (BIM) of existing domestic buildings to assess their energy performance using a Building Energy Modelling (BEM) technique. The focus is on the conversion process from gbXML BIM export file to an idf file for EnergyPlusTM. The conversion process is broken down into six steps of progressive addition of idf objects to enable verification. The measured operational data are used to assess the adequacy of the defaults being used

    Design methodology for integrating multipath systems (building services)

    Get PDF
    Purpose – The purpose of this paper is to report on a geometrical integration methodology that can be used to organise some types of these systems. Most multipath delivery systems, such as Building Services (BSs), are arbitrarily distributed with no known solution to reduce the complexity in the way channels are arranged. Design/methodology/approach – Integration for optimal functionality through reduction of geometrical complexity is achieved by understanding the elements of complexity within current practices; identifying commonalities between the various components which can be used for integration; performing an axiomatic design to resolve design complications; adopting theory of inventive problem-solving for methodology and process development towards optimal functionality; and generating a mathematical solution to inform digital modelling of optimal design. The study takes into account thermophysical and electromagnetic interactions between utilities and uses novel mathematical manipulations based on designing a manifold of spherical and cylindrical geometries joined using Bezier surfaces. Findings – Once a solution was reached, computer-aided design (CAD) iterations were undertaken for channelling six BSs into a single unit. The outcome was concentric cylindrical–spherical shells superimposed with spacings of typically few millimetres to deliver/distribute the utilities. It is applied to bring together BSs into a single trunking system at minimal, yet appropriate, proximal distances, and it allows distribution of any number of services in any direction. Physical prototypes were produced and initial testing of their performance (reported elsewhere) has been encouraging. Originality/value – A design methodology for integrating arbitrary distributed paths/conduits. The approach could be incorporated into CAD tools as a design feature to facilitate integration of multipath delivery systems

    Developing suitable thermal models for domestic buildings with Smart Home equipment

    Get PDF
    Smart Home controls are part of a Smart Home system and allow remote and automated control of heating systems. The key research question is: with the rapid advancement of new wireless and networked control products, which thermal modelling techniques are able to best make use of the real-time performance data arising from in-home sensors and predict the impact of using advanced controls to reduce energy demand and maximise comfort? As part of identifying suitable modelling approaches for Smart Homes, a lumped parameter model which builds on the work done by Bacher and Madsen (2011) using a data-driven “Grey box” model has been developed. The potential for using the measured data and the impacts of advanced controls for this modelling technique are discussed

    Decision support systems for domestic retrofit provision using smart home data streams

    Get PDF
    The scope of this paper is a study of the potential of decision support systems for retrofit provision in domestic buildings, using monitoring technologies and performance-based analysis. The key research question is: in the age of proliferation of cheap, mobile and networked sensing equipment, how can measured energy and performance data from multiple in-home sensors be utilised to accelerate building retrofit measures and energy demand reduction? Over the coming decade there will be a significant increase in the amount of measured data available from households, from national Smart Meter rollouts to personal Smart Home systems, which will provide unparalleled insights into how our homes are performing and how households are behaving. The new data streams from Smart Homes will challenge the prevailing research and policy initiatives for understanding and promoting energy-saving building retrofits. This work is part of a £1.5m UK Research Council funded project ‘REFIT: Personalised Retrofit Decision Support Tools for UK Homes using Smart Home Technology’ (www.refitsmarthomes.org). Three methods are combined to give multiple perspectives of the research challenge: 1) A literature review on Smart Homes with a focus on academic progress to date in this area; 2) Results from actual Smart Home monitored data streams, as measured in an on-going study of UK-based Smart Homes; and 3) a discussion of performance-based analysis leading to insights in decision support system provision for Smart Building owners. The approach outlined in this work will be of significant interest to national governments when promoting Smart Meter roll-outs, to energy companies in promoting new services using Smart Home data and to the academic community in providing a foundation for future studies to meet the domestic building retrofit challenge
    corecore