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ABSTRACT 
Smart Home controls are part of a Smart Home 
system and allow remote and automated control of 
heating systems. The key research question is: with 
the rapid advancement of new wireless and 
networked control products, which thermal 
modelling techniques are able to best make use of the 
real-time performance data arising from in-home 
sensors and predict the impact of using advanced 
controls to reduce energy demand and maximise 
comfort? As part of identifying suitable modelling 
approaches for Smart Homes, a lumped parameter 
model which builds on the work done by Bacher and 
Madsen (2011) using a data-driven “Grey box” 
model has been developed. The potential for using 
the measured data and the impacts of advanced 
controls for this modelling technique are discussed.   

INTRODUCTION 
In the battle against human-induced Global 
Warming, the United Nations established the Kyoto 
Protocol, setting internationally binding Green House 
Gas (GHG) emission reduction targets. The current 
UK legislation is set by the Climate Change Act 2008 
(Act C.C., 2008) and is consistent with the pledges 
within the Kyoto Protocol as it requires a 34 per cent 
cut in the 1990 emissions levels by 2020. In addition 
the Act sets ‘The target for 2050’ by when the UK is 
legally bound to achieve a target of at least 80 per 
cent reduction on the emissions of 1990, placing the 
UK at the forefront of the battle against global 
warming. One of the main areas that the Carbon Plan 
focuses on, due to the large potential in energy 
savings that exists, is the UK built environment. 
Heating and electricity consumption in the housing 
stock is responsible for almost 25 per cent of the 
UK’s GHG emissions and for 40 per cent of the total 
energy usage (HM Government, 2011). According to 
the ‘UK Housing Energy Fact File’, 61.3 per cent of 
the energy consumed by the UK households serves 
solely for space heating (DECC, 2012). Domestic 
heating controls come into play to help match the 
household’s heat demand (and consequently the fuel 
used) with the heat actually needed. By allowing the 
heating system to operate only when and where 
required and to the minimum acceptable in terms of 
thermal comfort temperature, good practice of 

heating controls leads to maximised comfort and 
minimised energy consumption (Carbon Trust, 
2011).  

The importance of domestic heating controls is 
magnified with the rapid advancement of new 
products (e.g. Smart Home controls as shown in 
Figure 1) that allow for easier and more direct 
control over heating. Promising new features such as 
increased speed of response, intelligence, 
automation, versatility and customisation can help 
achieve a sustainable balance between energy 
demand and energy usage.  

The aim of this paper is to report on findings from 
on-going research work to develop suitable 
performance models and simulation methods for 
domestic buildings with Smart Home controls. Smart 
Home controls are part of a Smart Home system and 
allow remote and automated control of heating 
systems, lights and appliances. The key research 
question is: with the rapid advancement of new 
wireless and networked control products, which 
thermal modelling techniques are able to best make 
use of the real-time performance data arising from in-
home sensors and predict the impact of using 
advanced controls to reduce energy demand and 
maximise comfort? Smart Home systems, including 

Figure  1  Example  of  advanced  heating  controls  in  a
Smart Home. The pictures included have been sourced
from  RWE  SmartHomes  http://www.rwe‐
smarthome.de/web/cms/en/448330/smarthome/  



devices such as wireless Thermostatic Radiator 
Valves, wireless room thermostats, occupancy 
sensors and window-door opening sensors, can now 
provide detailed measured data and insights on 
building performance and occupants’ use of heating 
systems, through frequent readings of air 
temperature, humidity levels, occupancy and many 
other performance variables. Smart Home controls 
can also provide a wide variety of possible control 
options to households, including personalised 
schedules and remote access. 

There are two distinct parts forming the research 
methodology. Firstly, a wide academic literature 
review is conducted on the most appropriate 
modelling methods for domestic buildings which are 
equipped with advanced controls and on real-world 
measured data-driven modelling methods. Secondly, 
a case study of a UK domestic building equipped 
with Smart Home technology is presented. In this 
Smart Home, measured operational data from a range 
of in-home sensors have been collected. As part of 
identifying suitable modelling approaches for Smart 
Homes, a lumped parameter model, which builds on 
the work done by Bacher and Madsen (2011), using a 
data-driven “grey box” model is explored. Finally, 

the potential for using the measured data and for 
modelling the impacts of advanced controls is 
discussed.  

LITERATURE REVIEW 
There are a variety of available methods for 
modelling the energy use in buildings. The selection 
of an adequate technique mainly depends on the 
availability of input data and the required outputs. 
For example, high-resolution temperature 
measurements are necessary for evaluating the 
impact of a building’s thermal insulation. On the 
other hand, generalised assumptions for the thermal 
conditions in the houses (such as the BREDEM 
model specified internal temperatures) may suffice 
for the purposes of a simple energy rating. In this 
paper, appropriate modelling techniques are 
identified for making the most out of the real-time 
performance data arising from in-home sensors in 
order to predict the impact of using advanced 
controls to reduce energy demand and maximise 
comfort in homes. 

One of the early attempts to categorise modelling 
techniques was done by Rabl (1988) in his overview 
of methods for dynamic analysis of measured data.  

 

Table 1 Methods for analysis of measured energy use by Rabl (1988) 

Methods for thermal analysis of buildings (Rabl, 1988)  

a) Steady State methods Forward Inverse Comments 

Degree day method [ASHRAE 1985] * 
 

The simplest. Based on fixed reference temperature 18.3 oC. Can go 
quite wrong for commercial or super-insulated buildings. 

Variable base degree day method [ASHRAE 1985] * 
 

Variable reference temperature. Can be good approximation for 
annual consumption. 

Bin method [ASHRAE 1985] * 
 

Input: hours in each 2.8 C (5 F) bin of ambient temperature. More 
flexible than variable base degree day method: can model 

temperature dependent features, weekends etc. 

PRISM [Fels 1986] 
 

* 

Needs data for energy use (several periods/year) and for daily 
average ambient (no Tint). Finds reference temperature and heat loss 

coefficient divided by heater efficiency. Best for weather 
correction. 

ASHRAE TC 4.7 * 
 

Modified bin methods with cooling load factors etc. to account for 
some transient effects and determine peak loads. 

b) Dynamic methods Forward Inverse Comments 

Thermal network [Sonderegger 1977] * * 
In forward direction no limit on complexity of network. For inverse 

problem network must be simple with equivalent thermal 
characteristics 

Response factor series [Stephenson and Mitalas 1967] * 
 

Tabulated results for building components [ASHRAE 1985] useful 
for calculation of peak loads 

Fourier analysis [Shurcliff 1984] * * 
Calculates response to sinusoidal (constant plus diurnal) input. Can 

be combined with calculation in time domain. 

ARMA model [Subbarao 1985] 
 

* 
Coefficients lack direct physical interpretation but that can be 

provided with time constants and admittances. 

BEVA [Subbarao 1985] * * 
Combination ARMA + Fourier methods. Loads calculated in time 

domain. 

Modal analysis [Bacot et al. 1984] * * 
Diagonalisation of the differential equations for the building. For 

inverse problem building is approximated by small number modes. 

Differential equation [Eq. 2.10 Rabl 1988] 
 

* 
Approximates building by linear differential equations Order and 

coefficients adjusted by data. Can be integrated analytically. Much 
flexibility for fitting, prediction and control. 

Computer simulation [e.g. DOE 2.1, BLAST] * * 
Very detailed. Potentially the most accurate method. Also models 
HVAC equipment. Requires much expertise and labor for coding 

the input. 

Hybrid methods * * 
Computer simulation plus differential equations. 

To be developed. 



Table 2 Comparison between “white”, “black” and “grey box” methods according to Foucquier et al. (2013) 

Comparison between “white”, “black” and “grey box” techniques. 

Methods  Building geometry Training data Physical interpretation 

Physical or ‘‘white 
box’’ method 

A detailed description of the 
building geometry is required 

 
No training data are required 

 

Results can be interpreted in 
physical terms 

Statistical or ‘‘black 
box’’ method 

A detailed description of the 
geometry is not required 

A large amount of training data collected 
over an exhaustive period of time is 

required 

There are several difficulties to 
interpret results in physical terms 

Hybrid or ‘‘grey 
box’’ method 

A rough description of the 
building geometry is enough 

A small amount of training data 
collected over a short period of time is 

required 

Results can be interpreted in 
physical terms 

 

As shown in Table 1, Rabl categorises the available 
methods into steady state and dynamic methods and 
comments on the applicability and limitations of each 
modelling technique. Steady state methods differ 
from dynamic methods in that constant boundary 
conditions are assumed over time and usually 
disregard the heat stored within the building 
elements, thus offering the advantage of simpler 
calculating procedures and decreased computing 
time. In the second column of the table it is stated 
whether each method would be appropriate for 
solving forward and/or inverse problems. The 
difference between forward (or else direct) and 
inverse (or else parameter estimation) problems has 
been well explained by Beck and Woodbury (1998). 
Whilst forward problems deal with known 
characteristics (in the case of homes, building 
characteristics, heat transfer functions etc.) and 
compute the dependent variables (i.e. thermal loads), 
inverse problems rely on both prior physical 
knowledge of the model (i.e. building envelope 
characteristics) and measured data (i.e. measured 
temperatures, occupancy) to determine some basic 
parameters or functions that are not known. Since 
this early work, multiple computer simulation 
programs are available for performing steady state 
and dynamic analysis of the building performance. 
According to Van der Veken et al. (2004) and their 
comparison of simulation programs, both steady state 
and dynamic models can be equally useful for 
building energy assessment. This conclusion was 
drawn by the fact that the steady state simulation 
software EPW (the Flemish Energy Performance 
Regulation calculation method) calculated a net 
energy demand that deviated by only an insignificant 
4 per cent from the equivalent transient calculations 
of the dynamic models TRNSYS (more information 
can be found at http://www.trnsys.com) and ESP-r 
(http://www.esru.strath.ac.uk/Programs/ESP-r.htm). 

More recent work by Foucquier et al. (2013) reviews 
the state of the art in modelling techniques for 
building energy performance prediction. As shown in 
Table 2 the modelling methods are distinctly divided 
into three categories; the “white box” method, the 
“black box” method and a combination of the two, 
the “grey box” method. “White box” or physical 
methods employ heat transfer equations to predict the 
energy performance of a building. The solution of the 

equations heavily depends on the fine description of 
the building model and thus “white box” models are 
best suited for newly designed buildings where most 
of the thermal properties are known. In contrast to 
physical models “black box” methods use mainly 
statistical methods and machine learning techniques 
to describe the behaviour of the building as a system. 
Since “black box” methods disregard the physical 
features of the building (its geometry and thermal 
characteristics) the interpretation of the results in 
physical terms is not always feasible and generalised 
conclusions valid for buildings other than the 
specified case study cannot be drawn. Lastly, a 
hybrid of the two above methods, the “grey box” 
method, can bridge the gap between limited physical 
knowledge of the building and limited measured 
data. “Grey box” methods use basic prior knowledge 
of the building characteristics combined with a 
reasonable amount of measured data to estimate the 
missing physical parameters and best describe the 
building thermal performance.  

In most previous applications of modelling the 
energy use and thermal performance of dwellings the 
“white box” method has been used. This has been 
necessary as measuring and collecting in-situ 
performance data has been both expensive and time 
consuming, due to the sensors required and the 
efforts of data collection. One such example comes 
from Firth et al. (2010) where a Community 
Domestic Energy Model (CDEM) has been 
developed in order to predict the CO2 emissions of 
the existing English housing stock.  

However, recent technological advances and policy 
measures in Smart Meters and Smart Home 
equipment mean that a “grey box” approach to 
modelling dwelling energy use and thermal 
performance may become a viable option on a large 
scale. Homes equipped with Smart technology will 
record numerous performance data, and so the 
modelling approach falls into the category of an 
inverse problem and its solution requires a “grey 
box” modelling technique. The following section 
focuses on the literature related to this topic and is 
dedicated to case studies using “grey” methods. 

“Grey box” model application review 

The “grey box” method is a popular technique that 
has found application in many different types of 
building energy studies, an extensive review of 



which has been conducted by Foucquier et al. (2013).   
However, some of the applications mentioned in this 
paper instead of using monitored data from existing 
buildings use the output of building simulation 
software as the input dataset for the statistical 
analysis. As the data come from a simulated 
environment, the complexity and uncertainty of the 
model can increase. This paper will only focus on 
case studies where actual measured data from the 
buildings have been collected. 

In their paper on identifying suitable models for the 
heat dynamics of buildings Bacher and Madsen 
(2011) use RC-network models of increasing 
complexity to represent the different parts of the 
building and likelihood ratio tests to determine the 
performance of each model. Through this method of 
evaluation an appropriate model including only the 
most important parameters is fitted to the heat 
dynamics of the building. 

When parameter estimation is needed genetic 
algorithms are usually employed as the statistical tool 
of the “grey box” method. One such example comes 
from Wang and Xu (2005) in their report on 
parameter estimation of internal thermal mass of 
building dynamic models. Using the lumped 
parameter method and operational data from the case 
study they focused on developing a genetic algorithm 
capable of estimating the internal thermal parameters 
of the building network. 

Another paper comes from Andersen et al. (2000) 
where a lumped parameter model is formulated as a 
system of stochastic differential equations and 
statistical methods are implemented for parameter 
estimation. The interesting addition of this work is 
the introduction of submodels for the radiator power 
and the solar radiation and the conclusion that 
radiator power should be modelled separately due to 
the different excitation of the input variables. 

As observed in the literature review, lumped 
parameter models are the dominant physical 
modelling method selected in the field of building 
energy modelling with “grey box” techniques.  
Despite their limited accuracy, the reduced 
complexity and short computational time, they often 
outperform the complex building simulation 
approaches that require excessive amounts of effort 
and time, especially when multiple iterations are 
necessitated.  Work on improving the lumped 
parameter models to account for more complex 
buildings is ongoing. One such example is the work 
on multi-layered constructions by Gonzalez et al. 
(2013) where the Dominant Layer Model is 
presented. Here a set of simple rules can be followed 
to ensure that all layers are taken into account and 
that the simplified lumped parameter method can 
result in more accurate calculations. 

CASE STUDY: SMART HOME IN 
LOUGHBOROUGH 
An initial exploration of the selected modelling 
method was realised for a typical UK domestic 
building.  The building was occupied by a family of 
five and thus the applicability of the modelling 
methods to real-life households was investigated. In 
contrast to experimental buildings and laboratory 
environments where most of the parameters can be 
controlled and adapted, this study explores the 
uncertainties involved in real domestic buildings 
where occupant behaviours and heating practices 
play a significant role in the total energy 
performance. In this section a description of the study 
building is given, followed by a description of the 
measurement equipment and the data collected. 

House description 

The house is a two-storey traditional detached house 
built in 1930 and is situated in Loughborough, UK. 
In Figure 2 the floorplans of the house are given 
along with the openings and radiator placement. The 
groundfloor consists of an entrance hallway, a living 
room, a small conservatory and a kitchen and the first 
floor has two bedrooms and a family bathroom. 

 

 
Figure 2 Floorplans of groundfloor (left) and first floor 

(right) with radiator positioning (in red) 

The total floor area amounts to approximately 105m2. 
The external walls are 275mm thick, consisting of a 
masonry inner leaf with a plaster finish, brickwork on 
the outside and cavity with insulation that has been 
introduced after the original construction and its 
properties and treatment remain unknown. The floor 
to ceiling height of the groundfloor is 2.65m and 
2.55m on the first floor. The majority of window, 
door openings are made of UPVC and are double-
glazed. The floors are mainly of suspended timber 
construction. The internal partitions are mainly solid 
or timber framed.  

Measurement equipment and data collected 

The property was chosen to offer easy access and a 
friendly environment as extensive research was 
necessitated. The case study lasted for a period of 

  



Table 3 Summary of data collection, specifications and details 

 

one month. Table 3 summarises the measured data 
and provides further details on the time intervals and 
equipment used. Figure 3 demonstrates the HOBO 
data loggers1 (HOBO pendants and U12s) and 1-wire 
i-button2 temperature sensors that were used for data 
collection.  

 

 
Figure 3 HOBO pendants for room air temperature, 
HOBO U12 for room air temperature, illuminance and 
humidity levels and 1-wire ibuttons for surface temperature 
monitoring. 

 The monitoring included multiple components of the 
heating system and of the building envelope. Heat-
emitter temperatures were collected from multiple 
points of two of the radiators to provide an accurate 
approximation of the surface temperature. The 
surface temperature of all the remaining heat emitters 
was collected from a single point of their surface. 
Monitoring equipment was also attached to both 
internal and external walls. The monitoring 

                                                           
1 More information and the product specifications 
can be found at http://www.onsetcomp.com/ 
2 More information and the product specifications 
can be found at http://www.maximintegrated.com/ 

equipment was mounted on the wall-side surface of 
the radiators and duct tape was used for the 
attachment to the surface. Hobo data loggers were 
placed at a head high level away from obstacles, 
direct solar radiation, currents and heat sources when 
possible. Lastly, an external company was employed 
to monitor the whole house gas consumption at a 30 
minute interval.    

“Grey box” model application 

This section describes the initial exploration of a 
“grey box” model suitable for the building under 
study. The methodology described by Bacher and 
Madsen (2011) is followed for identifying a suitable 
model for the heat dynamics of this particular 
building. The statistical tool R, CTSM-R by R Core 
team (2013) was used. The detailed measurements as 
described in the previous section combined with 
some basic knowledge of the building’s geometry 
and thermal properties were used to form a learning 
model with a physical approach. Table 4 lists the 
available input data that were collected throughout 
November 2013. The data are 30min-interval 
averaged values of readings coming from the whole 
building. 

Table 4 Available input datasets 

Ti (oC) 
 the indoor temperature as measured by the Hobo 

sensors  

Tt (oC) 
 internal air temperature readings from the Smart 

Home TRVs 

Th (oC) 
 the surface temperature of the heat emitters 

(radiators) 

Tm (oC) 
 the average from the internal and external surface 

temperature readings of an internal wall  

Te (oC) 
 the average from the internal and external surface 

temperature readings of two external walls  

Ta (oC) 
 the ambient temperature as measured by an on-

campus weather station in very close proximity to 
the building’s location 

Ph (kWh) 

 the gas consumption originally measured in m3 
(conversion factor used for Loughborough, sourced  
from http://www.energylinx.co.uk; 1m3 equals to 

11.363kWh) 
Ps  (kW/m2)  the global solar irradiance from the weather station  
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Kitchen/placed on shelf HOBO  U12 30 1 
Hallway/placed on shelf HOBO  Pendant 30 1 

Conservatory/placed on shelf HOBO  Pendant 30 1 
Bathroom/placed on shelf HOBO  U12 30 1 

Surface temperature 
(oC) 

One on each radiator/6 radiators ibutton 30 1 
Multiple on 2 radiators ibuttons 30 5 

Entrance hall/external wall ibutton 30 1 
Kitchen/external wall ibutton 30 1 

Living room/internal wall ibutton 30 1 
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Thermostatic 
Radiator Valves 

measurements (oC) 

On the supply pipe of each 
radiator 

Smart Home sensor 
Danfoss 

(http://heating.danfoss.com/) 
1 1 

Internal air 
temperature 

(oC) 
Living room and hallway 

Smart Home sensor 
Danfoss 

(http://heating.danfoss.com/) 
1 1 

 Gas consumption (m3) Whole house Automated meter reader 30 1 



 
Figure 4 Lumped parameter full model 

 

As an addition to the model proposed by Bacher, the 
model used for this study is extended to account for 
the Smart Home Thermostatic Radiator Valves 
mounted on each radiator of the building.  The full 
lumped parameter model is demonstrated in Figure 
4. It includes seven parts, each representing one of 
the building’s elements that take part in the heat flow 
process and one of the state variables. The part at the 
left end of the model represents the TRV temperature 
(Tt), thermal resistance (Rit) and heat capacitance 
(Ct).  

The stochastic differential equations describing the 
heat flow within the building as determined by the 
lumped parameter model, as well as the observation 
equation that links the measurement to the 
measurement error are listed below:  

								(1) 

                                       (2) 

                        (3) 

                        (4) 

          (5) 

Observation equation 

,                                                      (6) 

 

The first term of the differential equations (1 to 5) 
multiplied with dt is the deterministic part and the 
second term is the stochastic part with a system noise 
process dω. In each equation C stands for the heat 

capacity (in ) and R for the thermal resistance (in 

). 

DISCUSSION AND RESULT ANALYSIS 
It is important that the model’s performance is 
evaluated and validated and that the adequacy of the 
“grey box” method on this or any other similar case 
is justified.  

When evaluating the performance of the model both 
statistical and physical tests need to be performed to 
make sure that the model conforms to the statistical 
assumptions and that the results are realistic.   

Figure 5 presents the auto-correlation function 
(ACF) and the cumulated periodogram (CP) of the 
residuals. Although the CP presents a good fit and 
the residuals could be interpreted as white noise, the 
ACF shows that the model could be following a 
periodic signal. The heat dynamics are not 
represented very accurately and this is an indication 
that the model could be improved.  

 

  
Figure 5 Auto-correlation function (ACF) left, cumulated 

periodogram (CP) right 

By plotting the residuals against the gas consumption 
data in Figure 6 a correlation can be seen between 
the peaks of the two diagrams. This was expected as 
the whole house gas consumption was assumed to 
serve solely for space heating. The need for 
disaggregating the gas used for space heating from 
the gas used for domestic hot water and cooking is 
highlighted. It should also be noted that the heat 
emitter surface temperature follows a very similar 
pattern to the gas consumption and an interaction 
between the residuals and Th should also be 
considered. 

 



 
Figure 6 Plots of residuals against gas consumption data (Ph). Measured (in black) and predicted (in red) internal air 

temperatures are presented in the last diagram.  

From a physical point of view some of the estimated 
parameters of the building can be checked against 
empirical values. The thermal resistance of the 

building envelope is estimated at 0.87 	which is a 

very reasonable value for an insulated cavity wall, 
considering that a 1930’s cavity wall3 with two brick 

leaves has a U-value of 1.8  which equals to an 

R-value 0.56 . The effective window area of the 

building (i.e.the window area through which solar 
radiation enters the building) was estimated at 4m2 

which seems quite low compared to a total area of 
25m2 of openings that can be identified through the 
building plans. This low value could be due to the 
orientation of the house and obstructs from 
neighbouring buildings and/or plantation. The 
effective area of the envelope (i.e. the area affected 
by the global solar radiation) was calculated at 276 
m2, which exceeds the calculated total external area 
of the house (approximately 220m2). Finally, the heat 
capacity of the external wall was calculated at 0.56 

. The estimated values show that although the 

model describes the study building quite accurately, 
further improvements could be made so that the 
parameters are closer to the real values.  

There is scope here for identifying the potential of 
this model. By extending the lumped parameter 
model to include even more variables that have not 

                                                           
3 1930’s cavity wall U-value has been sourced from 
http://www.uwe.port.ac.uk/hi4web/insulation%20cal
cs/section1.htm. 

been taken into account such as ventilation and the 
implied heat losses, more realistic results could be 
achieved. On the other hand, taking a closer look at a 
single room of the house could offer a higher 
resolution insight and more direct and precise 
findings regarding the heat flows that could more 
easily be tested against physical knowledge.  

CONCLUSION 
This paper presents an initial exploration of the 
applicability of a “grey box” model in a real-life 
domestic Smart Home. The demonstrated model is 
not a finalised model. However, the results provide 
insights into identifying the correct path for further 
research on appropriate modelling techniques for 
measured data arising from Smart Home equipment.  

Through literature review amongst the various 
modelling techniques that are available for the energy 
performance of buildings, “grey box” techniques 
have been identified as the most appropriate method 
for using high-resolution data. 

The application of a “grey box” model to the case 
study has shown that a typical domestic UK building 
equipped with Smart Home equipment (or any other 
equipment that can offer similar datasets of 
monitored temperatures) can be modelled effectively 
by using this method. This statistically and physically 
validated model can offer insight into the heat flows 
within the building and the heating system.  

Finally, combined with real-time Smart Home data 
the model could potentially offer valuable insights on 
the heating practices and possible retrofit options to 
lower energy demand.  



NOMENCLATURE 
,  the temperature measured in oC, k refers to 

the part of the building where k= i (internal 
air), t (TRV), h (heat emitter), m (internal 
walls), e (building envelope), a (ambient 
air); 

,  the heat capacity of the part k of the 

building in ; 

,           thermal resistance between the internal air  

and the part k of the building in ; 

,          thermal resistance between the ambient air   

and the building envelope in ; 

,  effective window area for solar gains to 
the internal air in m2; 

,  effective building envelope area for solar 
gains to the envelope in m2 

,  variance of the Wiener process, again k 
stands for the part of the building 
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