91 research outputs found

    Mesenchymal stem cells-derived exosomes: A new possible therapeutic strategy for Parkinson’s disease?

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by severe motor complications caused by a progressive degeneration of dopaminergic neurons (DAn) and dopamine loss. Current treatment is focused on mitigating the symptoms through administration of levodopa, rather than on preventing DAn damage. Therefore, the use and development of neuroprotective/disease-modifying strategies is an absolute need, which can lead to promising gains on PD translational research. Mesenchymal stem cells (MSCs)–derived exosomes have been proposed as a promising therapeutic tool, since it has been demonstrated that they can act as biological nanoparticles with beneficial effects in different pathological conditions, including PD. Thus, considering their potential protective action in lesioned sites, MSCs-derived exosomes might also be active modulators of the neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Therefore, in this review, we analyze the current understanding of MSCs-derived exosomes as a new possible therapeutic strategy for PD, by providing an overview about the potential role of miRNAs in the cellular and molecular basis of PD.This research was funded by Portuguese Foundation for Science and Technology(FCT): IF Development Grant (IF/00111/2013) to AJ Salgado) and Post-Doctoral Fellowship to F.G. Teixeira (SFRH/BPD/118408/2016). This article has been developed under the scope of the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Internationalization Operational Programme (POCI), and by National funds, through FCT, under the scope of the projects POCI-01-0145-FEDER-007038 and POCI-01-0145-FEDER-029751.info:eu-repo/semantics/publishedVersio

    Preclinical comparison of stem cells secretome and levodopa application in a 6-hydroxydopamine rat model of Parkinson’s Disease

    Get PDF
    Parkinson’s Disease (PD) is characterized by the massive loss of dopaminergic neurons, leading to the appearance of several motor impairments. Current pharmacological treatments, such as the use of levodopa, are yet unable to cure the disease. Therefore, there is a need for novel strategies, particularly those that can combine in an integrated manner neuroprotection and neuroregeneration properties. In vitro and in vivo models have recently revealed that the secretome of mesenchymal stem cells (MSCs) holds a promising potential for treating PD, given its effects on neural survival, proliferation, differentiation. In the present study, we aimed to access the impact of human bone marrow MSCs (hBM-MSCs) secretome in 6-hydroxydopamine (6-OHDA) PD model when compared to levodopa administration, by addressing animals’ motor performance, and substantia nigra (SN), and striatum (STR) histological parameters by tyrosine hydroxylase (TH) expression. Results revealed that hBM-MSCs secretome per se appears to be a modulator of the dopaminergic system, enhancing TH-positive cells expression (e.g., dopaminergic neurons) and terminals both in the SN and STR when compared to the untreated group 6-OHDA. Such finding was positively correlated with a significant amelioration of the motor outcomes of 6-OHDA PD animals (assessed by the staircase test). Thus, the present findings support hBM-MSCs secretome administration as a potential therapeutic tool in treating PD, and although we suggest candidate molecules (Trx1, SEMA7A, UCHL1, PEDF, BDNF, Clusterin, SDF-1, CypA, CypB, Cys C, VEGF, DJ-1, Gal-1, GDNF, CDH2, IL-6, HSP27, PRDX1, UBE3A, MMP-2, and GDN) and possible mechanisms of hBM-MSCs secretome-mediated effects, further detailed studies are needed to carefully and clearly define which players may be responsible for its therapeutic actions. By doing so, it will be reasonable to presume that potential treatments that can, per se, or in combination modulate or slow PD may lead to a rational design of new therapeutic or adjuvant strategies for its functional modeling and repair.This work was supported by the European Regional Development Fund (FEDER), through the Competitiveness Internationalization Operational Programme (POCI), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the projects POCI-01-0145-FEDER-029751 and POCI-01-0145-FEDER-007038. This article has also been developed under the scope of the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)

    Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology

    Get PDF
    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L−1 oNP min−1 g−1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industr

    Swarm-based Descriptor Combination and its Application for Image Classification

    Get PDF
    In this paper, we deal with the descriptor combination problem in image classification tasks. This problem refers to the definition of an appropriate combination of image content descriptors that characterize different visual properties, such as color, shape and texture. In this paper, we propose to model the descriptor combination as a swarm-based optimization problem, which finds out the set of parameters that maximizes the classification accuracy of the Optimum-Path Forest (OPF) classifier. In our model, a descriptor is seen as a pair composed of a feature extraction algorithm and a suitable distance function. Our strategy here is to combine distance scores defined by different descriptors, as well as to employ them to weight OPF edges, which connect samples in the feature space. An extensive evaluation of several swarm-based optimization techniques was performed. Experimental results have demonstrated the robustness of the proposed combination approach

    Numerical and experimental characterisation of polylactic acid (PLA) processed by additive manufacturing (AM): bending and tensile tests

    Get PDF
    In additive manufacturing (AM), one of the most popular procedures is material extrusion (MEX). The materials and manufacturing parameters used in this process have a significant impact on a printed product’s quality. The purpose of this work is to investigate the effects of infill percentage and filament orientation on the mechanical properties of printed structures. For this reason, the characterisation of polylactic acid (PLA) was done numerically using the finite element method and experimentally through mechanical tests. The experiments involved three-point bending and tensile tests. The results showed that mechanical performance is highly dependent on these processing parameters mainly when the infill percentage is less than 100%. The highest elastic modulus was exhibited for structures with filament align at 0◦ and 100% infill, while the lowest one was verified for specimen filament aligned at 0◦ and 30% infill. The results demonstrated that the process parameters have a significant impact on mechanical performance, particularly when the infill percentage is less than 100%. Structures with filament aligned at 0◦ and 100% infill showed the maximum elastic modulus, whereas specimens with filament oriented at 0◦ and 30% infill showed the lowest. The obtained numerical agreement indicated that an inverse method based only on the load–displacement curve can yield an accurate value for this material’s elastic modulus.National Innovation Agency (ANI) for MSc grant of Mariana Salgueiro nº POCI-01-0247- FEDER-039733 and Portuguese Foundations for Science and Technology. This project was co-financed by European Regional Development Fund (ERDF) through SI&IDT Projects in the framework of co-hosting—Competitiveness and Internationalisation Operational Programme (CIOP)—COMPETE 2020, Portugal 2020, with the National Innovation Agency (ANI) as the Intermediate Partner. Fabio Pereira acknowledges the Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020. Mariana Salgueiro and Andrea Zille acknowledge the European Commission and the National Innovation Agency (ANI) for the financial support through the project “ARCHKNIT: Innovative smart textile interfaces for architectural applications”, Ref.: POCI-01-0247-FEDER-039733. This project was co-financed by European Regional Development Fund (ERDF) through SI&IDT Projects in the framework of co-hosting—Competitiveness and Internationalisation Operational Programme (CIOP)—COMPETE 2020, Portugal 2020, with the National Innovation Agency (ANI) as the Intermediate Partner. Nuno Dourado acknowledges FCT for the conceded financial support through the reference project UID/EEA/04436/2019 and “Programa bilateral de Portugal com a Tunísia”. Charii Fakher acknowledges the « Fondation pour la Recherche Scientifique” for the conceded financial support through “Programa bilateral de Portugal com a Tunísia”

    Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation

    Get PDF
    Wickerhamomyces anomalus LBCM1105 is a yeast isolated from cachaça distillery fermentation vats, notable for exceptional glycerol consumption ability. We report its draft genome with 20.5x in-depth coverage and around 90% extension and completeness. It harbors the sequences of proteins involved in glycerol transport and metabolism.The authors gratefully acknowledge Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE) and the Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) for support with the sequencing of LBCM1105. This work was supported by CAPES/Brazil (PNPD 2755/2011; PCF-PVE 021/2012), by CNPq (Brazil), processes 304815/2012 (research grant) and 305135/2015-5, and by AUXPE-PVES 1801/2012 (Process 23038.015294/2016-18) from Brazilian Government and by UFOP. C.L. is supported by the strategic program UID/BIA/04050/2013 [POCI-01-0145-FEDER-007569] funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional de Competitividade e Internacionalizacao (POCI). DMRP is a fellow from the CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) - Brazil (310080/2018-5)

    Levantamento molecular de micoplasma hemotrópico em mão-pelada (Procyon cancrivorus) do sul do Brasil

    Get PDF
    Hemoplasmas are non-cultivable bacterial parasites of erythrocytes that infect domestic and wild animals, as well as humans. Their means of transmission and pathogenesis remain contentious issues and difficult to evaluate in wild animals. Procyon cancrivorus is a South American carnivore and occurs in all Brazilian biomes. In this study, we aimed to investigate occurrences of hemoplasmas infecting P. cancrivorus and to identify their 16S rRNA gene, in southern Brazil. DNA was extracted from spleen and blood samples of P. cancrivorus (n = 9) from different locations. Hemoplasma DNA was detected in six samples, based on 16S rRNA gene amplification and phylogenetic analysis. Four of the six sequences belonged to the “Mycoplasma haemofelis group”, which is closely related to genotypes detected in Procyon lotor from the USA; one was within the “Mycoplasma suis group”, closely related to “Candidatus Mycoplasma haemominutum”; and one was within the intermediate group between these clusters. Thus, these sequences showed that the molecular identity of hemoplasmas in the population studied was very variable. In five positive animals, Amblyomma aureolatum ticks and a flea (Ctenocephalides felis felis) were collected. The present study describes the first molecular detection of mycoplasmas in P. cancrivorus.Os micoplasmas hemotrópicos (hemoplasmas) são parasitas bacterianos não-cultiváveis de eritrócitos que infectam tanto animais domésticos e selvagens, como seres humanos. A transmissão e a patogênese são discutíveis e difíceis de avaliar em animais selvagens. O mão pelada (Procyon cancrivorus) é um carnívoro Sul-americano, que ocorre em todos os biomas brasileiros. O objetivo do presente estudo é o de investigar a ocorrência de hemoplasmas infectando P. cancrivorus e identificar seu gene 16S rRNA no Sul do Brasil. O DNA foi extraído do baço e amostras de sangue de P. cancrivorus (n= 9). O DNA de hemoplasma foi detectado em seis amostras, com base na amplificação do gene 16S rRNA e na análise filogenética. Quatro das seis sequências pertencem ao “Grupo Mycoplasma haemofelis”, que estão intimamente relacionadas aos genótipos detectados no Procyon lotor dos EUA; uma dentro do “Grupo Mycoplasma suis”, que está intimamente relacionado ao “Candidatus Mycoplasma haemominutum”, e uma dentro do grupo intermediário entre esses clusters, mostrando assim que há uma diversidade genética de hemoplasmas na população estudada. Em cinco animais positivos, foram coletados carrapatos Amblyomma aureolatum e uma pulga Ctenocephalides felis. O presente estudo traz a primeira detecção molecular de micoplasmas em P. cancrivorus

    Annona coriacea Mart. fractions promote cell cycle arrest and inhibit autophagic flux in human cervical cancer cell lines

    Get PDF
    Plant-based compounds are an option to explore and perhaps overcome the limitations of current antitumor treatments. Annona coriacea Mart. is a plant with a broad spectrum of biological activities, but its antitumor activity is still unclear. The purpose of our study was to determine the effects of A. coriacea fractions on a panel of cervical cancer cell lines and a normal keratinocyte cell line. The antitumor effect was investigated in vitro by viability assays, cell cycle, apoptosis, migration, and invasion assays. Intracellular signaling was assessed by Western blot, and major compounds were identified by mass spectrometry. All fractions exhibited a cytotoxic effect on cisplatin-resistant cell lines, SiHa and HeLa. C3 and C5 were significantly more cytotoxic and selective than cisplatin in SiHa and Hela cells. However, in CaSki, a cisplatin-sensitive cell line, the compounds did not demonstrate higher cytotoxicity when compared with cisplatin. Alkaloids and acetogenins were the main compounds identified in the fractions. These fractions also markedly decreased cell proliferation with p21 increase and cell cycle arrest in G2/M. These effects were accompanied by an increase of H2AX phosphorylation levels and DNA damage index. In addition, fractions C3 and C5 promoted p62 accumulation and decrease of LC3II, as well as acid vesicle levels, indicating the inhibition of autophagic flow. These findings suggest that A. coriacea fractions may become effective antineoplastic drugs and highlight the autophagy inhibition properties of these fractions in sensitizing cervical cancer cells to treatment.e FINEP (MCTI/FINEP/MS/SCTIE/DECIT-01/ 2013—FP XII-BIOPLAT), Barretos Cancer Hospital, CAPES, CNPq, FAPEMIG, UFSJ. RMR is a recipient of CNPq Productivity Gran
    corecore