589 research outputs found

    Editor's foreword

    Get PDF
    Humans need food (and love) to survive. At the evolutionary level, the survival of biological species is mediated by growth, fertility and longevity phenotypes. However, the human race has evolved in an environment of extremely difficult periods of time, when food was scarce. Hence, the act of hunting or gathering food was laborious and required higher energy expenditure than what it takes to have food nowadays. Such a scenario promoted the ability to eat as much as was available. The "thrifty" genes may thus evolved to promote human survival in a life of famine-to-feast cycle. The scenario, especially in the economically advanced countries, has been changed in the last two decades: the average person has enough money to fill the daily caloric needs with fast-food meals. And the average daily energy expenditure has declined in parallel with a sedentary lifestyle. Hence the evolutionary pattern of "the more you eat, the better for survival" became no longer an advantage but a liability, and the presence of Homo obesus is increasing dramatically.Biomedical Reviews 2006; 17: v-vi

    Composite material identification as micropolar continua via an optimization approach

    Get PDF
    A strategy based on material homogenization and heuristic optimization for the structural identification of composite materials is proposed. The objective is the identification of the constitutive properties of a micropolar continuum model employed to describe the mechanical behaviour of a composite material made of rigid blocks and thin elastic interfaces. The micropolar theory (Cosserat) has been proved to be capable of properly accounting for the particles arrangements as well as their size and orientation. The constitutive parameters of the composite materials, characterized by different textures and dimensions of the rigid blocks, are identified through a homogenization procedure. Thus, the identification is repeated exploiting the static or modal response of the composite materials and using the Differential Evolution algorithm. The benchmark structures assumed as target are represented by discrete models implemented in ABAQUS where the blocks and the elastic interfaces are modelled by rigid bodies and elastic interfaces, respectively. The obtained results show that proposed strategies provide accurate results paving the way to the experimental validation and in field applications

    Measurement and classification of human characteristics and capabilities during interaction tasks

    Get PDF
    In this paperwe address the need to design adaptive interacting systems for advanced industrial production machines. Modern production systems have become highly complex and include many subsidiary functionalities, thus making it difficult for least skilled human operators interact with them. In this regard, adapting the behavior of the machine and of the operator interface to the characteristics of the user allows a more effective interaction process, with a positive impact on manufacturing efficiency and user's satisfaction. To this end, it is crucial to understandwhich are the user's capabilities that influence the interaction and, hence, should be measured to provide the correct amount of adaptation.Moving along these lines, in this paper we identify groups of users that, despite having different individual capabilities and features, have common needs and response to the interaction with complex production systems. As a consequence,we define clusters of users that have the same need for adaptation. Then, adaptation rules can be defined by considering such users' clusters, rather than addressing specific individual user's needs

    Flexural characterization of a novel recycled-based polymer blend for structural applications

    Get PDF
    The use of recycled plastic in construction fields, among others, is becoming a turning point for resolving significant related problems such as resource management, sustainability and plastic waste generation. Hence, in the context of sustainability, the "Three R’s": reduce, reuse and recycle, are getting more attention day after day. There has been a huge surge in the recycling and reuse of plastic composites due to their eco-friendliness, lightweight, life cycle superiority and low cost. However, because of a lack of knowledge of their performance and behavior, their application is still limited in the real world. The aim of this research is to understand the behavior of recycled plastic and derive its material properties which can be used in the design of structural and non-structural elements. In the present study, three stiffened plates are manufactured from 80% of recycled plastic (around 50% of recycled Polypropylene rPP, and around 50% of High Density Polyethylene PEHD with a little part of Low Density Polyethylene PELD) and 20% of virgin polypropylene PP Copolymer. Three-point bending test is performed on the three specimens. In the experimental campaign, the behavior of these stiffened plates under pure bending loads has been studied. After that, the material properties are extracted from the data collected during the experiment using Ramberg–Osgood equation. Then, once implemented in finite elementcmodels, it was observed that the simulated material shows similar behavior to the one registered during the experiment. As a conclusion, the derived material properties show reliability and they can be used to study a design of a structural or non-structural component including recycled plastic

    Buckling behavior of multilayer cylindrical shells composed of functionally graded nanocomposite layers under lateral pressure in thermal environments

    Get PDF
    In this study, the stability behavior of multilayer cylindrical shells made of functionally graded nanocomposite layers (FG-NCLs) subjected to the lateral pressure in thermal environments is investigated. It is postulated that nanocomposite layers forming layered cylindrical shells are made of single-walled carbon nanotube (SWCNT)-reinforced polymers that have four types of profiles based on the uniform and linear distributions of mechanical properties. The material properties of SWCNTs are assumed to be dependent on location as well as temperature and are obtained from molecular dynamics simulations. The governing equations are derived as partial differential equations within shear deformation theory (SDT) and solved in a closed form, using the Galerkin procedure, to determine the lateral critical pressure (LCP) in thermal environments. The numerical representations relate to the buckling behavior of multilayer cylindrical shells made of functionally graded nanocomposite layers under the uniform lateral pressure for different CNT patterns and temperatures within SDT and Kirchhoff-Love theory (KLT)

    Low-carbon fuels for aviation

    Get PDF
    The aviation industry is responsible for 2.1% of global CO2 emissions and represents 12% of CO2 emissions from all transport sources. Aviation is a particularly difficult sector to decarbonise because alternative fuels are relatively expensive, produce highly distributed greenhouse gas emissions in their production and combustion, and should preferably be compatible with existing aviation infrastructure. Emissions from aviation also include nitrogen oxides (NOx), water vapour, particulates, carbon monoxide, unburned hydrocarbons, and sulfur oxides (SOx). These have a 2-3 times greater climate change impact than CO2 alone. The non-CO2 emissions of alternative low-carbon aviation fuels can differ significantly from those of kerosene and have not been fully evaluated. Biofuels • Bio-jet fuels are currently the most technologically mature option for low-carbon aviation fuels because some of these feedstocks and processes are already deployed at scale for other uses. • Bio-jet fuels must be blended with kerosene to achieve certification and can then be used with existing aviation infrastructure. This blending proportionally decreases any potential CO2 emission saving. • Bio-jet fuels can be made from a range of feedstocks, which are restricted in the UK to waste materials. UK biofuel feedstock availability is sufficient for only a small proportion of UK aviation fuel demand (<20%). With blending, their contribution to CO2 emissions saving is much less (<<10%). • Life cycle assessment scenarios show very variable impacts on CO2 emissions for biofuel processes: only some deliver emissions savings compared to fossil fuel kerosene. Calculations for forest residues appear to show consistent savings in CO2 emissions compared to jet fuel, but these do not take account of the difference in timescale between emission and re-absorption, leading to a major underestimation of emissions. The diversion of agricultural and forestry waste to bio-jet fuel production will have detrimental effects, for example on soil quality. Power-to-Liquid fuels • PtL fuels must be blended with kerosene to achieve certification and can then be used with existing aviation infrastructure. This blending proportionally decreases any potential CO2 emission saving. • PtL fuels are currently not produced at scale. Significant technological development is required to reduce production costs and increase production scale. • Use of PtL fuels in aviation would require a very significant increase of UK low-carbon electricity generation and storage capacity to power production of green hydrogen and CO2 from direct air capture. • Life cycle assessment scenarios show that PtL fuels could have 3-10 times lower emissions impact than fossil fuel kerosene if renewable electricity and CO2 from direct air capture are used to produce the fuel. Hydrogen • Hydrogen cannot be used as a drop-in fuel for aircraft, and its use will require significant redesign of aviation infrastructure. • The greenhouse gas emissions impact of hydrogen depends on its mode of production. Currently, global hydrogen production is mostly from fossil fuel sources, with much less than 1% generated from low-carbon sources. • Increasing low-carbon hydrogen production via electrolysis (green hydrogen) will require the building of additional low-carbon electricity generation capacity. • Low-carbon hydrogen production via methane reforming with carbon capture and storage (blue hydrogen) should use natural gas obtained from producers with low emissions intensity. The goal of policy will be to promote whichever technologies achieve the desired sustainability targets. A molecular science and engineering approach combines an understanding of molecular behaviour with a problem-solving mindset derived from engineering. This approach is crucial to the development and the eventual deployment of the fuel technologies discussed in this paper

    An Adaptive Virtual Training System Based on Universal Design

    Get PDF
    The increasing complexity of manufacturing environments requires effective training systems to prepare the operation personnel for their tasks. Several training systems have been proposed. A common approach is the application of virtual environments to train interactions with an industrial machine in a safe, attractive, and efficient way. However, these training systems cannot adapt to the requirements of an increasingly diversified workforce. This paper introduces an approach for the design of an adaptive virtual training system based on the idea of universal design. The system is based on a two-step approach that consists of an initial adaptation to the user capabilities and real-time adaptations during training based on measurements of the user. The adaptations concern the use of different representations of lessons with different complexity and interaction modalities. The proposed approach provides a flexible training system that can adapt to the needs of a broad group of users
    • …
    corecore