22 research outputs found

    Diet-induced maternal obesity alters insulin signalling in male mice offspring rechallenged with a high-fat diet in adulthood

    Get PDF
    Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metab118122FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2011/22156-7; 2013/12003-

    High-fat diet, inflammation and metabolic programming : effects on insulin signaling in newly weaned and adult offspring of mice

    No full text
    Orientadores: Adriana Souza Torsoni, Marciane MilanskiDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências AplicadasResumo: O estilo de vida moderno tem levado ao aumento na prevalência de obesidade e suas co-morbidades em gestantes e na população cada vez mais jovem. Muitos dos efeitos do consumo direto de dieta hiperlipídica (DH) no metabolismo de glicose e lipídios já são bem estabelecidos. No entanto, considera-se importante avaliar se o consumo de DH durante períodos críticos do desenvolvimento seria capaz de ativar mecanismos epigenéticos, perpetuando mudanças no metabolismo da prole e criando um ciclo vicioso que não poderia ser interrompido. O objetivo desse estudo foi avaliar o efeito potencial da programação metabólica em prejudicar a sinalização de insulina na prole recém desmamada de mães alimentadas com dieta hiperlipídica durante a gestação e lactação. Além disso, investigamos se a exposição precoce a um ambiente obesogênico seria capaz de exacerbar o prejuízo no metabolismo de glicose na vida adulta de animais reexpostos à dieta hiperlipídica. Para isso, camundongos fêmeas da linhagem Swiss foram alimentados com dieta controle ou DH durante os períodos de adaptação, gestação e lactação, e os tecidos da prole macho foram analisados nos dias 28 e 82. Os resultados mostram que a prole de mães obesas (HC-O) apresentou maior ganho de peso, adiposidade e ingestão alimentar que a prole de mães controle (CC-O). Além do mais, apresentou prejuízos na sinalização de insulina em tecidos periféricos como fígado, adiposo e músculo, e centrais, como o hipotálamo, provavelmente devido à maior ativação de vias inflamatórias. A reexposição à DH parece agir como um fator agravante para o desenvolvimento do fenótipo obeso, levando a resistência sistêmica à insulina e hiperleptinemia. É válido ressaltar que o tecido adiposo parece ser o tecido mais afetado na prole adulta após a reexposição da dieta (HH-O), o que pode contribuir para a desregulação metabólica observada. Em conjunto, nossos resultados sugerem que o consumo materno de dieta hiperlipídica durante a gestação e lactação pode ocasionar alterações no metabolismo glicídico da prole tanto em animais recém desmamados quanto adultos. Por fim, a obesidade materna leva à maior susceptibilidade ao desenvolvimento de obesidade e prejuízos na sinalização de insulina na prole que não podem ser revertidos pelo consumo de uma dieta controle, no entanto, podem ser agravados especialmente quando os animais são reexpostos à DHAbstract: Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnancy and young population. Many effects from direct consumption of a high-fat diet (HFD) on glucose and lipid metabolism are well established. However, it is important to assess whether maternal consumption of HFD during critical periods of development can trigger epigenetic mechanisms, perpetuating changes in offspring metabolism and creating a vicious circle that cannot be broken. This study evaluated the potential effect of metabolic programming in impairing the insulin signaling in recently weaned offspring of obese dams. In addition, we investigated if early exposure to obesogenic environment is able to exacerbate the impairment of glucose metabolism in adult life in response to a high-fat diet. For this, Swiss female mice were fed with Stardard chow (SC) or HFD before and during mating, gestation and lactation. Tissues from male offspring were obtained at d28 and d82 to analyze activation of key proteins of inflammatory and insulin signaling pathways by Western Blot. Offspring of obese dams (HC-O) showed greater weight gain, adiposity and food intake than offspring of control dams (CC-O). Furthermore, they showed impairment in insulin signaling in central and peripheral tissues, associated to increased activation of inflammatory pathways. The HFD re-exposure seems to be an aggravating factor in development of obese phenotype leading to systemic insulin resistance and hyperleptinaemia. Moreover, adipose tissue was ultimately the most affected tissue in adult offspring after HFD rechallenged (HH-O) which may have contributed to the metabolic deregulation observed. Together our results suggest that maternal consumption of high-fat diet during pregnancy and lactation can cause changes in glucose metabolism of offspring in both weaned and adult animals. Additionally, maternal obesity leads to increase susceptibility to the development of obesity and impairment in insulin signaling in offspring that cannot be reversed by SC consumption, but can be aggravated especially when re-exposed to HFDMestradoMetabolismo e Biologia MolecularMestra em Ciências da Nutrição e do Esporte e Metabolism

    High-fat diet during pregnancy and lactation impairs the cholinergic anti-inflammatory pathway in the liver and white adipose tissue of mouse offspring

    No full text
    14/18165-9; 13/10706-8476643/2012-0Cholinergic anti-inflammatory pathway (CAP) prevents inflammatory cytokines production. The main was to evaluate the effect of maternal obesity on cholinergic pathway in the offspring. Female mice were subjected to either standard chow (SC) or high-fat diet (HFD) during pregnancy and the lactation period. After weaning, only male offspring from HFD dams (HFD-O) and from SC dams (SC-O) were fed the SC diet. Key proteins of the CAP were downregulated and serum TNF-α was elevated in the HFD-O mice. STAT3 and NF-κB activation in HFD-O mice ICV injected with nicotine (agonist) were lower than SC-O mice. Basal cholinesterase activity was upregulated in HFD-O mice in both investigated tissues. Lipopolysaccharide increased TNF-α and IL-1β expression in the liver and WAT of SC-O mice, but this effect was greater in HFD-O mice. In conclusion these changes exacerbated cytokine production in response to LPS and contributed to the reduced sensitivity of the CAP.Cholinergic anti-inflammatory pathway (CAP) prevents inflammatory cytokines production. The main was to evaluate the effect of maternal obesity on cholinergic pathway in the offspring. Female mice were subjected to either standard chow (SC) or high-fat di422192202FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICO14/18165-9; 13/10706-8476643/2012-014/18165-9; 13/10706-8476643/2012-0Les cages généralement utilisées en expérimentation animale peuvent empêcher les rats d'adopter la plupart des formes naturelles de comportement locomoteur. Ces animaux ont tendance a` adopter des habitudes sédentaires. Dans cette étude, nous démontrons

    Autophagy proteins are modulated in the liver and hypothalamus of the offspring of mice with diet-induced obesity

    No full text
    2011/51.205-6Nutritional excess during pregnancy and lactation has a negative impact on offspring phenotype. In adulthood, obesity and lipid overload represent factorsthat compromise autophagy, a process of lysosomal degradation. Despite knowledge of the impact of obe343041FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2011/51.205-62011/51.205-

    Additional file 2: Figure S2. of Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet

    No full text
    Characterization of d42 offspring from control and obese dams prior to HFD exposure. Body weight (A), adiposity (B), caloric intake (C), fasting glucose (D), serum insulin (E) and lipids (CHOL and TAG - F), in d42 CC and HH groups. Values are means (n = 4-8) + - SEM. Student's t-test was used in all analyses to compare CC and HH groups. Different letters indicate statistical significance between groups (p ≤ 0.05). (JPG 390 kb

    Additional file 1: Figure S1. of Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet

    No full text
    Antropometric and biochemical parameters of dams at gestation and lactation. Body weight (A), adiposity (B), fasting glucose (C), serum insulin (D) and lipids (CHOL and TAG - E) and total hepatic lipid content (F) of control (C-D) and HFD (HF-D) dams in the gestational day 12, and lactational day 15. Values are means (n = 3-6) + - SEM. Student's t-test was used in all analyses to compare C-D and HF-D groups in each period (gestation or lactation). Different letters indicate statistical significance between groups (p ≤ 0.05). (JPG 667 kb

    PEPCK content in liver and soleus.

    No full text
    <p>Western blot analysis of PEPCK in liver at d28 (A) and d82 (C), in soleus at d28 (B) and d82 (D). For control of gel loading, membranes were reblotted with β-actin or α-tubulin. Data are means ± SEM (n = 3–8). Two-way ANOVA (C and D) or t test (A and B) was used. In all blots, at least three different litters were considered. Different letters indicate significant differences at p<0.05.</p

    Inflammatory and insulin signalling proteins in hypothalamus at d82.

    No full text
    <p>Western blot analysis of p-JNK (A), p-IKK (B), PTP1B (C), p-IRS1 (D) and p-AKT (E) in the hypothalamus at d82. For control of gel loading, membranes were reblotted with β-actin or total proteins. Data are means ± SEM (n = 3–8). Two-way ANOVA was used. In all blots, at least three different litters were considered. Different letters indicate significant differences at p<0.05.</p

    Inflammatory and insulin signalling proteins in hypothalamus at d28.

    No full text
    <p>Western blot analysis of p-JNK (A), p-IKK (B), PTP1B (C), p-IRS1 (D), p-AKT (E), and p-STAT3 (F) in the hypothalamus at d28. For control of gel loading, membranes were reblotted with β-actin or total proteins. Data are means ± SEM (n = 3–8). T test analysis was used. In all blots, at least three different litters were considered. Different letters indicate significant differences at p<0.05.</p
    corecore