22 research outputs found

    Importance du contexte cellulaire et de la régulation spatio-temporelle de l'expression du facteur de transcription Otx2 dans la modulation de ses fonctions

    Get PDF
    The molecular mechanisms explaining several functions of the homeogene Otx2 during embryonic development are the focus of this work. In a first part the importance of the regulation of its expression in the regionalisation of the central nervous system is studied. At the end of gastrulation the posterior border of Otx2 expression will position the isthmic organizer responsible for the induction of the midbrain and hindbrain. A mouse model was developed where this border is replaced by an ubiquitous expression of the gene. Contrary to the predictions of the current model, the organizer then correctly arises, and is shifted anteriorly. A concentration threshold of Otx2 thus appears necessary to its regionalising function. In a second part the importance of the cellular context in Otx2 function in the adult retina is examined. Otx2 is expressed in both tissues of this organ, the neural retina and RPE. A ChIP-seq analysis performed on both tissues revealed that this homeogene occupies very different sets of binding sites, which suggests distinct functions of the transcription factor. Most Otx2-bound sites in the neural retina were also bound by its paralogue Crx, with which a functional redundancy may therefore exist. A new mouse line finally allowed the study of the complete Otx2 interactome in the neural retina; this analysis showed that Otx2 does not interact with other important transcription factors of this tissue, and that Crx may therefore be the main actor of the Otx family in neural retina function. It also led to the discovery of a series of previously unknown partners of Otx2, which could be associated to new functions of this homeogene.Cette thèse s’intéresse aux mécanismes permettant d’expliquer plusieurs des fonctions de l’homéogène Otx2 au cours du développement. Une première partie étudie l’importance de la régulation de son expression dans la régionalisation du système nerveux central. A la fin de la gastrulation la frontière d’expression postérieure d’Otx2 déterminera la position de l’organiseur isthmique responsable de l’induction du mésencéphale et du métencéphale. Un modèle murin a été mis au point dans lequel cette frontière est abolie au profit d’une présence uniforme du gène. A l’encontre du modèle actuel, l’isthme est alors correctement induit, et est de plus déplacé antérieurement, signe qu’un seuil net de concentration d’Otx2 est nécessaire à sa fonction régionalisante. Une seconde partie étudie l’importance du contexte cellulaire dans les modalités d’action d’Otx2 au niveau de la rétine adulte. Otx2 est exprimé dans les deux tissus qui composent cet organe, la neurorétine et le RPE. Une étude par ChIP-seq dans ces deux tissus a pu montrer que l’homéogène y occupait des sites de fixation très différents, suggérant des fonctions distinctes. L’écrasante majorité des sites occupés par Otx2 dans la neurorétine l’était également par son paralogue Crx, indice d’une redondance fonctionnelle. Une nouvelle lignée de souris a permis l’analyse des partenaires protéiques d’Otx2 dans la neurorétine, et pu démontrer qu’Otx2 ne formait pas d’interactions avec les autres facteurs de ce tissu, faisant en fait de Crx l’acteur principal de la famille Otx. Cette analyse a également dévoilé une série de partenaires jusque-là inconnus d’Otx2, potentiellement associée à de nouvelles fonctions de la protéine

    The importance of cellular context and of regulation of expression in modulating the functions of Otx2

    Get PDF
    Cette thèse s’intéresse aux mécanismes permettant d’expliquer plusieurs des fonctions de l’homéogène Otx2 au cours du développement. Une première partie étudie l’importance de la régulation de son expression dans la régionalisation du système nerveux central. A la fin de la gastrulation la frontière d’expression postérieure d’Otx2 déterminera la position de l’organiseur isthmique responsable de l’induction du mésencéphale et du métencéphale. Un modèle murin a été mis au point dans lequel cette frontière est abolie au profit d’une présence uniforme du gène. A l’encontre du modèle actuel, l’isthme est alors correctement induit, et est de plus déplacé antérieurement, signe qu’un seuil net de concentration d’Otx2 est nécessaire à sa fonction régionalisante. Une seconde partie étudie l’importance du contexte cellulaire dans les modalités d’action d’Otx2 au niveau de la rétine adulte. Otx2 est exprimé dans les deux tissus qui composent cet organe, la neurorétine et le RPE. Une étude par ChIP-seq dans ces deux tissus a pu montrer que l’homéogène y occupait des sites de fixation très différents, suggérant des fonctions distinctes. L’écrasante majorité des sites occupés par Otx2 dans la neurorétine l’était également par son paralogue Crx, indice d’une redondance fonctionnelle. Une nouvelle lignée de souris a permis l’analyse des partenaires protéiques d’Otx2 dans la neurorétine, et pu démontrer qu’Otx2 ne formait pas d’interactions avec les autres facteurs de ce tissu, faisant en fait de Crx l’acteur principal de la famille Otx. Cette analyse a également dévoilé une série de partenaires jusque-là inconnus d’Otx2, potentiellement associée à de nouvelles fonctions de la protéine.The molecular mechanisms explaining several functions of the homeogene Otx2 during embryonic development are the focus of this work. In a first part the importance of the regulation of its expression in the regionalisation of the central nervous system is studied. At the end of gastrulation the posterior border of Otx2 expression will position the isthmic organizer responsible for the induction of the midbrain and hindbrain. A mouse model was developed where this border is replaced by an ubiquitous expression of the gene. Contrary to the predictions of the current model, the organizer then correctly arises, and is shifted anteriorly. A concentration threshold of Otx2 thus appears necessary to its regionalising function. In a second part the importance of the cellular context in Otx2 function in the adult retina is examined. Otx2 is expressed in both tissues of this organ, the neural retina and RPE. A ChIP-seq analysis performed on both tissues revealed that this homeogene occupies very different sets of binding sites, which suggests distinct functions of the transcription factor. Most Otx2-bound sites in the neural retina were also bound by its paralogue Crx, with which a functional redundancy may therefore exist. A new mouse line finally allowed the study of the complete Otx2 interactome in the neural retina; this analysis showed that Otx2 does not interact with other important transcription factors of this tissue, and that Crx may therefore be the main actor of the Otx family in neural retina function. It also led to the discovery of a series of previously unknown partners of Otx2, which could be associated to new functions of this homeogene

    The importance of cellular context and of regulation of expression in modulating the functions of Otx2

    No full text
    Cette thèse s’intéresse aux mécanismes permettant d’expliquer plusieurs des fonctions de l’homéogène Otx2 au cours du développement. Une première partie étudie l’importance de la régulation de son expression dans la régionalisation du système nerveux central. A la fin de la gastrulation la frontière d’expression postérieure d’Otx2 déterminera la position de l’organiseur isthmique responsable de l’induction du mésencéphale et du métencéphale. Un modèle murin a été mis au point dans lequel cette frontière est abolie au profit d’une présence uniforme du gène. A l’encontre du modèle actuel, l’isthme est alors correctement induit, et est de plus déplacé antérieurement, signe qu’un seuil net de concentration d’Otx2 est nécessaire à sa fonction régionalisante. Une seconde partie étudie l’importance du contexte cellulaire dans les modalités d’action d’Otx2 au niveau de la rétine adulte. Otx2 est exprimé dans les deux tissus qui composent cet organe, la neurorétine et le RPE. Une étude par ChIP-seq dans ces deux tissus a pu montrer que l’homéogène y occupait des sites de fixation très différents, suggérant des fonctions distinctes. L’écrasante majorité des sites occupés par Otx2 dans la neurorétine l’était également par son paralogue Crx, indice d’une redondance fonctionnelle. Une nouvelle lignée de souris a permis l’analyse des partenaires protéiques d’Otx2 dans la neurorétine, et pu démontrer qu’Otx2 ne formait pas d’interactions avec les autres facteurs de ce tissu, faisant en fait de Crx l’acteur principal de la famille Otx. Cette analyse a également dévoilé une série de partenaires jusque-là inconnus d’Otx2, potentiellement associée à de nouvelles fonctions de la protéine.The molecular mechanisms explaining several functions of the homeogene Otx2 during embryonic development are the focus of this work. In a first part the importance of the regulation of its expression in the regionalisation of the central nervous system is studied. At the end of gastrulation the posterior border of Otx2 expression will position the isthmic organizer responsible for the induction of the midbrain and hindbrain. A mouse model was developed where this border is replaced by an ubiquitous expression of the gene. Contrary to the predictions of the current model, the organizer then correctly arises, and is shifted anteriorly. A concentration threshold of Otx2 thus appears necessary to its regionalising function. In a second part the importance of the cellular context in Otx2 function in the adult retina is examined. Otx2 is expressed in both tissues of this organ, the neural retina and RPE. A ChIP-seq analysis performed on both tissues revealed that this homeogene occupies very different sets of binding sites, which suggests distinct functions of the transcription factor. Most Otx2-bound sites in the neural retina were also bound by its paralogue Crx, with which a functional redundancy may therefore exist. A new mouse line finally allowed the study of the complete Otx2 interactome in the neural retina; this analysis showed that Otx2 does not interact with other important transcription factors of this tissue, and that Crx may therefore be the main actor of the Otx family in neural retina function. It also led to the discovery of a series of previously unknown partners of Otx2, which could be associated to new functions of this homeogene

    Otx2 ChIP-seq Reveals Unique and Redundant Functions in the Mature Mouse Retina.

    No full text
    International audienceDuring mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural retina, where the related Crx homeobox gene, a major regulator of photoreceptor development, is also expressed. To get a deeper view of mouse Otx2 activities in the neural retina, we performed chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq) on Otx2. Using two independent ChIP-seq assays, we identified consistent sets of Otx2-bound cis-regulatory elements. Comparison with our previous RPE-specific Otx2 ChIP-seq data shows that Otx2 occupies different functional domains of the genome in RPE cells and in neural retina cells and regulates mostly different sets of genes. To assess the potential redundancy of Otx2 and Crx, we compared our data with Crx ChIP-seq data. While Crx genome occupancy markedly differs from Otx2 genome occupancy in the RPE, it largely overlaps that of Otx2 in the neural retina. Thus, in accordance with its essential role in the RPE and its non-essential role in the neural retina, Otx2 regulates different gene sets in the RPE and the neural retina, and shares an important part of its repertoire with Crx in the neural retina. Overall, this study provides a better understanding of gene-regulatory networks controlling photoreceptor homeostasis and disease

    Contrasted Otx2 genome occupancy in neuroretina and RPE.

    No full text
    <p><b>A.</b> Venn diagram showing the overlap of OBR core sets in NR (red) and RPE (blue). <b>B.</b> Venn diagram showing the overlap of the closest genes to core set OBRs. <b>C.</b> Representative examples of OBR localization in RPE-specific (Ttr), NR-specific (Atf3) and common (Elmo2) genes. Shown are browser captures for the 4 ChIP-seq assays and control. The gene is indicated in blue at the bottom. <b>D.</b> Distribution of distance from the closest transcription start site (TSS) in NR and RPE for all OBRs lying within 10 kb from a known TSS. <b>E.</b> Distribution of Sp1 and Nkx2-5 motif occurrence 1 kb around the centre of OBRs in the NR (red) and the RPE (blue).</p

    Otx2 and Crx redundancy in the neuroretina.

    No full text
    <p><b>A.</b> Heatmap and dendrogram representation of Diffbind clustering of the indicated ChIP-seq experiments. <b>B.</b> Venn diagrams showing overlapping Crx bound regions (CBRs) and OBRs in the NR and in the RPE. CBRs represented the intersection of both Crx ChIP-seq replicates. <b>C.</b> Venn diagram showing the overlap between the above 415 common OBRs/CBRs in the RPE (grey) and the 426 OBRs common to RPE and NR (purple) shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0089110#pone-0089110-g004" target="_blank">Fig. 4A</a>. <b>D.</b> Otx2 and Crx transactivation of the <i>RBP3</i> promoter.</p

    Evolutionary conservation marks OBR relevance.

    No full text
    <p><b>A.</b> Principle of the relevance assay method: OBRs are sorted according to a given criterion and the mean rank of OBRs close to Otx2 target genes (red) is compared to the average mean rank of all called OBRs according to this criterion. A similar rank indicates a neutral criterion and a lower rank indicates a relevant criterion. <b>B.</b> Shown is the ratio of all OBRs mean rank to the mean rank of OBRs close to microarray confirmed Otx2 target genes according to evolutionary conservation, GC content, DNase hypersensibility (DHS) DNase sensibility and sensibility peaks (DSP), histone H3 lysine 4-mono- and tri-methylation (H3K4Me1, H3K4Me3), CpG islands (CPG), Consensus Coding sequences (CCDS) and known transcription factor bound regions (TFBS). The dashed line at the value of 1 represents the neutrality of all criteria. <b>C.</b> Application of the conservation criterion to the NR: expected and observed percentage of OBRs close to genes relevant to neural retina Gene Ontology terms among the 2/3 and 1/2 most conserved OBRs.</p

    Dual ChIP-seq assays identify relevant neural retina and RPE OBR core sets.

    No full text
    <p><b>A.</b> Venn diagrams showing the overlap of peaks identified in both ChIP-seq assays in each tissue. Intersections of GFP (green) and WT (red in NR, blue in RPE) assays represent two core sets of 4167 and 1638 binding sites in the NR and in the RPE, respectively. <b>B.</b> Motif enrichment analysis on the core datasets. Shown is the highest enriched TAATCC Otx2 binding consensus motif. <b>C.</b> Distribution of the TAATCC motif in 1 kb of genomic sequence around the centre of the core set of OBRs. <b>D.</b> GC content 1 kb around the centre of Otx2 bound regions in NR (red) and RPE (blue) compared to a random selection of 1000 regions in the genome (grey). <b>E.</b> RPE specific microarray confirmed genes with a called peak in their vicinity.</p

    Tissue-specific Otx2 genome binding in the retina.

    No full text
    <p><b>A.</b> Experimental design: four independent ChIP experiments were performed. RPE and neural retine (NR) nuclei of <i>Otx2<sup>+/Otx2−GFP</sup></i> mice were subjected to the GFP assays using a GFP antibody, and RPE and NR nuclei of <i>Otx2<sup>+/+</sup></i> mice were subjected to the WT assays using an Otx2 antibody. <b>B.</b> Genome distribution of Otx2 bound regions (OBRs). Upper panel: colour-coded pie chart showing peak distribution of each ChIP-seq assay compared to global genome distribution. Below, number of OBRs and peak height distribution of each assay are shown. Lower panel: percentage of peaks in defined functional domains of the genome for each assay. Colour-code is as in pie charts.</p
    corecore