32 research outputs found

    Whole Language and Phonics

    Get PDF
    Repaso sobre los m茅todos de ense帽anza y 谩nalisis de Whole Language y Phonics

    Composici贸n mineral y relaciones de fase de los arseniuros de Co-Fe-Ni del yacimiento de A茂t-Ahmane (Bou-Azzer, Marruecos). Diferencias con otros dep贸sitos.

    Get PDF
    El yacimiento de A茂t-Ahmane, localizado en el extremo este del distrito de Bou-Azzer, presenta notables variaciones mineral贸gicas en funci贸n de la etapa de mineralizaci贸n en el que nos encontramos. El estado I est谩 constituido por skutterudita I y calcita. El estado II, por rammelsbergita junto con miembros de la soluci贸n s贸lida rammelsbergita-safflorita, miembros de la soluci贸n s贸lida rammelsbergita-safflorita-l枚llingita, mienbros de la soluci贸n s贸lida rammelsbergita-l枚llingita y safflorita, niquelina, miembros de la soluci贸n s贸lida cobaltita-gersdorffita y dolomita. En el estado III precipit贸 skutterudita II y dolomita. El 煤ltimo estado IV, est谩 constituido por miembros de la soluci贸n s贸lida safflorita-l枚llingita, arsenopirita, alloclasita, skutterudita III y l枚llingita. La skutterudita del estado I indica temperaturas de formaci贸n de 650潞C, obtenidas a partir de campos experimentales de estabilidad de solciones s贸lidas. En el estado II, a partir de la precipitaci贸n de rammelsbergita, los fluidos van enriqueci茅ndose en Co y Fe, y tras la precipitaci贸n de los miembros de la serie cobaltita-gerdorffita, aumenta bruscamente la fugacidad del As junto con el aporte de Co, dando lugar a la precipitaci贸n de skutterudita del estado III. El estado IV indica un aumento de la fugacidad del S, de manera que tr谩s la precipitaci贸n de diarseniuros se produce una etapa de sulfoarseniuros que finaliza con un nuevo aporte de Co y As que supone una nueva precipitaci贸n de skutterudita y l枚llingita. En esta 煤ltima etapa las temperaturas estar铆an en torno a los 500潞C seg煤n los digramas de fases experimentales. Todas estas etapas de mineralizaci贸n, con fluidos de composici贸n y fugacidades de As variable produjeron la desestabilizaci贸n de las fases previas que se reequilibraron bajo las nuevas condiciones

    Formaciones bandeadas de hierro del SE de Angola: Caracterizaci贸n mineral贸gica y textural del yacimiento de Tchamutete

    Get PDF
    Las formaciones de hierro est谩n compuestas por rocas sedimentarias de gran inter茅s econ贸mico. La mayor铆a de 茅stas se formaron en el fondo marino durante el Arcaico y Paleoproterozoico inferior, con una composici贸n qu铆mica heterog茅nea de minerales ricos en hierro en los que encontramos 贸xidos (hematites o magnetita), silicatos (greenalita, minnesotaita o estilpnomelana), carbonatos (siderita y ankerita ) y sulfuros (pirita). El yacimiento de Tchamutete, situado en el Grupo Sur del distrito minero de Cassinga (al sur de la provincia angole帽a de Huila) es un yacimiento tip BIF (Formaciones Bandeadas de Hierro), de edad arcaica (alrededor de 2700 M Grupo Sur de Cassinga se puede dividir en 2 subgrupos diferentes: Grupo Jamba, en donde se encuentra Tchamutete, y Grupo Cuandja, ambos compuestos por unidades volcano-sedimentarias. Con el estudio de las muestras mediante diferentes t茅cnicas instrumentales como Rayos-X, microscop铆a 贸ptica y microscop铆a electr贸nica (SEM), se ha obtenido la mineralog铆a principal: hematites, martita, magnetita residual y cuarzo. Las muestras se ha agrupado en funci贸n de su proporci贸n en Fe y de su posici贸n estratigr谩fica. As铆, desde las m谩s profundas a las m谩s superficiales hemos definido 3 facies: Facies A: Con una concentraci贸n baja en Fe y finas bandas de hematites. Facies B: Con mayores proporciones en hematites que las muestras anteriores y menores cantidades de cuarzo, el cual presenta numerosas inclusiones de hematites. Facies C: Hematites masiva la cual ha sufrido una intensa meteorizaci贸n que le da una apariencia de hematites pulverulenta. Los resultados generales sugieren que el yacimiento de Tchamutete es un dep贸sito BIF de tipo Superior, enriquecido mediante procesos superg茅nicos. Respecto a su clasificaci贸n mineral贸gica se considerar铆a como un yacimiento de hematites de alto grado (m谩s del 60% en Fe), concretamente del tipo microplaty-hematites

    Investigaciones mineral贸gicas de muestras procedentes de campa帽as de exploraci贸n minera en Bolivia

    Get PDF
    El objetivo principal de este trabajo es realizar una caracterizaci贸n mineral贸gica de muestras de dos proyectos de Bolivia a trav茅s de microscop铆a 贸ptica de ojos, microscop铆a 贸ptica y microscop铆a electr贸nica de barrido (FESEM). A partir de los datos adquiridos, se obtendr谩 la posible secuencia paragen茅tica junto con un modelo gen茅tico plausible y los mejores criterios de exploraci贸n para el tipo de mineralizaci贸n sugerido. Se han recibido un total de ocho muestras de dos objetivos de exploraci贸n diferentes que son "SJ" y "PO". Presentan un car谩cter multiepis贸dico con tres etapas de mineralizaci贸n. La primera etapa se caracteriza por la alteraci贸n propil铆tica, seric铆tica y de silicificaci贸n de la roca hu茅sped. La segunda etapa es la m谩s importante desde el punto de vista econ贸mico con la precipitaci贸n de los principales minerales econ贸micos: la esfalerita, la galena, la estanita y los sulfos de Ag y Pb. El geoterm贸metro de freibergita nos permite acercarnos a la temperatura de cristalizaci贸n de la etapa 2 alrededor de 1700C. La asociaci贸n mineral y los tipos de alteraci贸n de las muestras estudiadas sugieren zonaci贸n vertical dentro de los dep贸sitos y se extraer铆an de las zonas de superficie. La mineralizaci贸n estudiada puede ser clasificada como un dep贸sito polimet谩lico de metal base de Ag Sn, perteneciente al cintur贸n de esta帽o de la zona central de la Cordillera Oriental, donde cientos de dep贸sitos de Sn-W-Ag, clase, definir la providencia. Para una mayor exploraci贸n de estos proyectos se recomienda realizar una cartograf铆a detallada prestando especial atenci贸n a la mineralizaci贸n conocida y alteraci贸n hidrot茅rmica, recolecci贸n de muestras y an谩lisis de los elementos que pueden estar asociados con el dep贸sito mineral de inter茅s. La subsiguiente exploraci贸n subterr谩nea (perforaci贸n y m茅todos geof铆sicos), permitir谩 a los ge贸logos realizar la evaluaci贸n de los dep贸sitos minerales

    Caracterizaci贸n mineral贸gica del yacimiento Candelaria (Gallinero de Cameros, La Rioja)

    Get PDF
    At the end of the 19th century several small underground metal mines were exploited in the Cameros Massif. Now, one of them, the Candelaria ore deposit, located in Gallinero de Cameros (La Rioja), has been studied. The main objective of this study is to characterize the geology and mineralogy of this mine. A mapping of the inside of the mine has also been done.During the Titonian-Albian, there was a rifting period that caused the formation of the Cameros Basin, with the deposition of more than 6500 meters of sediments in continental and transitional environments. The mineralisation is hosted in the Tera Group, which is the first depositional sequence in which the basin is divided. After the Alpine orogeny, the normal faults that had formed during the extensional stage were reactivated as thrusts and the Cameros Massif was formed.The samples taken in the mine were analysed with optical and electronic microscope to determine the mineralogy, composition and mineral paragenesis. The host rock is mainly an organic-rich shale layer, and the microconglomerates and sandstones around it. The mineralisation consists of disseminations, fracture-filling and replacements of copper sulphides and sulfosalts, mainly tennantite, chalcopyrite and bornite, but also arsenopyrite, with supergene covellite, azurite and malachite. The arsenic-rich mineral tennantite was the first copper mineral to form, while arsenopyrite was the last one to precipitate, originating large euhedral crystals.The event has been linked to the Albian-Coniacian hydrothermal metamorphism event, although its origin remains unclear. The connate fluids and meteoric water that leaked into the sediments would have been mobilized by temperature and pressure gradients originated by the infilling of the basin. During their circulation, they would have leached the oxidized metals of the continental sediments and would have been transformed into brines and enriched in sulphur due to the interaction with the evaporites of the Keuper facies. These oxidized brines would have been driven preferentially through the faults that were originated during the rifting stage, which would work as high-permeability conduits. The precipitation of the sulphides was induced by the presence of reduced organic-rich layers, pyrite, shale clasts and carbonates, which acted as metal traps. These characteristics enable us to classify the Candelaria mine as a redbed-hosted stratiform deposit.<br /

    Mecanismos de reequilibrio mineral en arseniuros de Co-Fe-Ni en Tamdrost (Bou-Azzer, Marruecos)

    Get PDF
    El yacimiento de Tamdrost, en el distrito de Bou-Azzer (Anti-Atlas Marroqu铆) est谩 formado por triarseniuros, diarseniuros y sulfoarseniuros de Co-Ni-Fe, y fases minoritarias de sulfuros de Cu. Debido a que el yacimiento ha sufrido diversas etapas de fracturaci贸n, los minerales han estado sometidos a procesos de disoluci贸n y reequilibrio. Se han diferenciado 3 asociaciones: la primera asociaci贸n est谩 compuesta por skutterudita, rammelsbergita, niquelita, miembros de la soluci贸n s贸lida rammelsbergita-safflorita, rammelsbergita-lollingita, rammelsbergita-lollingita-safflorita, safflorita-lollingita y lollingita. La segunda asociaci贸n la componen los minerales: skutterudita, safflorita, miembros de la soluci贸n s贸lida rammelsbergita-safflorita, miembros de la soluci贸n s贸lida cobaltita-gersdorffita, cobaltita y alloclasita. La tercera asociaci贸n est谩 compuesta por arsenopirita, bornita y calcopirita y aparece asociada a las 煤ltimas etapas de fracturaci贸n englobando fases previas. Mientras que la primera skutterudita presenta una tendencia Ni+Fe con posibles temperaturas de formaci贸n a 650潞C, la segunda muestra una tendencia de Ni sin una clara relaci贸n con las temperaturas. Los diarseniuros de la asociaci贸n I definen por completo el campo de soluci贸n s贸lida a 625潞C, demostrando la no existencia del solvus previamente propuesto por Gervilla y Ronsbo (1992). Los diarseniuros de la asociaci贸n II muestran una soluci贸n s贸lida completa a lo largo del binario NiAs2-CoAs2, que se extiende m谩s all谩 de los campos experimentales y con unas temperaturas de formaci贸n similares a las de la asociaci贸n I. La tercera asociaci贸n se form贸 a una temperatura de entre 440潞C y 460潞C

    Geolog铆a y mineralog铆a del yacimiento de Serrana Segunda (Gallinero de Cameros, La Rioja)

    Get PDF
    The main goal in this work is the study of Serrana Segunda ore deposit. In order to achieve this purpose, a petrographic study (with optical and electronic microscope) of rock samples collected in the mine, chemical analysis using dispersive X-ray energy and a bibliographic search of the geological context have been doneSerrana Segunda is located in the Cameros Massif, an ancient Mesozoic basin created during an extensive period of rupture. The host rocks, Titonian in age, were deposited during an active early rifting stage and are mainly formed by fluvial and lacustrine sediments. This rifting stage generated a stress forces with normal faults systems and high subsidence rates with a thicker sedimentary infill (more than 6,500 meters). Later, with the Alpine orogeny, faults were reactivated as thrusts and folded structures. The very low- to low grade metamorphism that suffered the region was caused by thermal subsidence and the creation of two different hydrothermal systems, which resulted in the circulation of high-temperature fluids from lower levels through fault planes, fractures and permeable rocks. The host rocks are a mix of subarkose and feldspathic wacke with significant amounts of organic matter and high porosity that allows the circulation of fluids. Ore minerals occur as cements and replacements. Sedimentary-diagenetic fine-grained bornite, anilite and chalcocite were overprinted by a late hydrothermal mineralization made up of chalcopyrite and tennantite as the predominant mineralogy, along with minor arsenopyrite, galena and cobaltite-gerdorsffite. As products of a supergenic alteration azurite, malachite, thyrolite, chenevixite and stromeyerite were precipitated. Copper sulfides have crystallized replacing plant fragments or in areas with a high accumulation of organic matter.The mineralization occurs as stratabound to stratiform disseminations and is related with significant accumulations of organic matter along bedding, which served as an in situ reductant that would cause the precipitation of copper from an oxidized sedimentary brine. The key attributes of Serrana Segunda ore deposit allow us classified it as a Redbed-hosted copper model.<br /

    La mina de Anglas (Pirineneos Centrales, Francia): Caracterizaci贸n mineral贸gica y textural

    Get PDF
    Se ha estudiado el yacimiento de Anglas, un fil贸n de Zn-Ba-(Pb) localizado en los Pirineos Centrales. Se han reconocido dos tipos de mineralizaciones: una stratabound compuesta por magnetita, pirrotita y siderita, que encaja en los hastiales dev贸nicos, y otra filoniana que rellena una falla extensional E-W y de fuerte buzamiento. Su mineralog铆a est谩 formada por esfalerita con cantidades menores de pirita, galena y calcopirita. La alteraci贸n superg茅nica dio lugar a un peque帽o nivel de calaminas en la parte superior del fil贸n. La comparaci贸n de este dep贸sito con otros similares tanto en los Pirineos como en la Europa occidental indica un tiempo de formaci贸n entre el Tri谩sico y Cret谩cico Inferior. La precipitaci贸n del dep贸sito se produjo cuando salmueras calientes ascendieron del basamento Paleozoico y se mezclaron con aguas marinas y mete贸ricas pr贸ximas a los m谩rgenes de una cuenca subsidiente

    Modelos de alteraci贸n de cromititas ofiol铆ticas durante el metamorfismo

    Get PDF
    The composition of chromite is commonly used to interpret the petrogenesis and the geodynamic setting of its host ultramafic rocks. Its high resistance to alteration compared to the primary silicates has made this oxide particularly useful as a petrogenetic indicator in ultramafic rocks in which metamorphic alteration has obliterated other primary fingerprints. However, a great body of work, based on the study of chromitites from ophiolites, layered complexes, Alaskian-Ural complexes and komatiites, have shown that the chemistry and structure of chromite can be also significantly modified during both prograde and retrograde metamorphism. One of the main targets of the scientific community working on chromite in ultramafic host rocks is to know what processes may produce the alteration of chromite, and more importantly, what are the implications for the petrogenetic interpretations derived from them. Of particular interest is to develop a general alteration model to constrain the processes, mechanisms and conditions (temperature, pressure and chemical potential of the species) able to alter the chromite and to test if the alteration occurs during the prograde and/or retrograde metamorphism. In this work I will use a combination of petrological and geochemical tools to model the mechanisms that produce the alteration of chromite during metamorphism. A set of chromite-bearing ophiolite complex showing variable metamorphic pathway were selected to undertake this study. The chromitite samples were selected from chromite deposits of three ophiolite complexes: i) the Eastern Rhodope in Bulgaria (retrograde metamorphism from eclogite- to amphibolite-facies), ii) Tehuitzingo serpentinites in Mexico (retrograde metamorphism from eclogite- to greenschist-facies), and iii) Los Congos and Los Guanacos ultramafic massifs in Argentina (prograde metamorphism up to granulite-facies with amphibolite-facies overprint). Additionally, chromitite samples of unmetamorphosed ophiolites from Mercedita (Eastern Cuba) and Dyne (New Caledonia) were used as examples of unaltered chromites for comparison. Chromite in the metamorphosed chromitites from Eastern Rhodope and Tehuitzingo exhibits up to four textural types: i) partly altered chromite, with primary cores surrounded by porous chromite enriched in Cr2O3 and FeO and depleted in Al2O3 and MgO; ii) porous chromite, with a well-developed porosity and chlorite filling the pores; iii) zoned chromite, characterized by primary cores surrounded by non-porous chromite enriched in Fe2O3 (i.e. ferrian chromite), occasionally rimmed by magnetite; and iv) non-porous chromite, with polygonal mosaic-like texture. The different pattern of zoning are interpreted as a consequence of two-stage processes associated with the infiltration of reducing and SiO2-rich fluids which evolve to more oxidizing and SiO2-rich conditions. P-T-X diagrams performed for these chromitites predict that the first alteration stage took placed as a result of the reaction of primary chromite with highly reducing SiO2-rich fluids. This would result in the formation of porous chromite in equilibrium with chlorite. The theoretical model reproduces well the changes of Cr# and Mg# observed from primary to porous chromite in the natural samples. It suggest that porous chromite take place from ca. 700 to 450潞C in Eastern Rhodope while its occurs from ca. 700 to 250潞C in Tehuitzingo, during the retrograde metamorphism from eclogite- to amphibolite- and greenschist-facies, respectively. T-驴SiO2 pseudosection suggests that the addition of highly reducing SiO2-rich fluids was crucial for the alteration of chromite. I suggest that such kind of fluids could emanate from the surrounding peridotite during serpentinization when silica minerals (olivine and pyroxene) were hydrated and dissolved. The temperatures for the second stage were estimated using isotermal Al3+-Cr3+-Fe3+ sections and range between 450 to and 600潞C. These overlap the range of temperatures estimated for the first stage. This suggests that oxidizing fluids evolved from previous reducing fluids, stabilizing magnetite and form non-porous ferrian chromite by infiltration through the network of pores in the porous chromite. The analysis of a suite of minor and trace elements (Ga, Ti, Ni, Zn, Co, Mn, V, Sc) in the chromite grains from Eastern Rhodope and Tehuitzingo using LA-ICP-MS in this work is revealed as a powerful tool to identify metamorphic fingerprints. Thus when the distribution of these elements in the altered chromite grains is compared with those from unmetamorphosed chromitites, I observed that partly altered chromites after primary high-Cr chromite are enriched in Zn, Co and Mn (ZCM-anomaly) but strongly depleted in Ga, Ni and Sc. This distribution of minor and trace elements is related to a decrease in Mg# [Mg/(Mg+Fe2+)] and Al2O3, produced by the crystallization of chlorite in the pores of porous chromite. Non-porous chromite is enriched in Ti, Ni, Zn, Co, Mn and Sc but depleted in Ga, suggesting that fluid-assisted processes have obliterated the primary magmatic signature. Zoned chromites have cores depleted in Ni, (Ga) and Sc but are progressively enriched in Zn and Co as Mg# and Al2O3 decrease toward the rims. They have overall lower concentrations in Ga, Ni and Sc and higher Zn and Co than the non-porous rims of ferrian chromite. Magnetite rims of zoned chromite from Tehuitzingo are strongly depleted in all minor and trace elements, denoting their subsequently formation. The complex variation of the minor and trace elements vs Fe3+/(Fe3++Fe2+) in the different types of chromite suggests a complex interplay of substitutions, linked with the ability of fluids to infiltrate the chromite and the extent of the re-equilibration between pre-existing cores and newly-formed rims. The results demonstrate that metamorphism can seriously disturb the original magmatic distribution of minor and trace elements in chromite. The abundances of these elements, and by inference the major elements, can be strongly modified even in the cores of grains that appear 驴unaltered驴 in terms of major elements. In the samples from Los Congos and Los Guanacos (Argentina) there are different textural types of chromite: i) Type I homogeneous Fe2O3-rich chromite in contact with relicts of clinopyroxene; ii) Type II, with spinel grains hosting a complex intergrowth of blebs and very fine lamellae of magnetite; iii) Type III, with symplectic texture composed of variable proportion of magnetite and spinel. Isochemical phase diagrams (pseudosection) computed for chromitite samples from Los Guanacos predict that the formation of non-porous ferrian chromite take place as a result of the infiltration of more oxidizing fluids through porous chromite probably, during seafloor metamorphism (ca. 300潞C and 4 kbar). According to the calculated phase relations, prograde metamorphism produces the reaction of non-porous chromite with chlorite to form a homogeneous chromite with higher Al2O3, Fe2O3 and MgO at ca. 780潞C and 10kbar, which according to regional studies can be associated with the granulite-facies peak conditions. The blocking temperature obtained in Type III chromite from Los Guanacos (ca. 600潞C) suggests that the exsolution of non-porous chromite in Type II and Type III chromite grains, which have higher Fe2O3 and lower Cr2O3 than those from Type I take place during the amphibolite-facies metamorphism. Partition coefficient of major, minor and trace elements (Ga, Ti, Ni, Zn, Co, Mn, V, Sc) in the equilibrium pair spinel-magnetite in Type III chromite grains from Los Guanacos indicate that Ga3+, Co2+ and Zn2+ are compatible, while Ti4+, Ni2+, V3+, Sc3+ and, lesser extent Mn2+ are incompatible in spinel. I suggest that such distribution is the consequence of the affinity of these metal ions for an octahedral or tetrahedral coordination site in the spinel structure and, therefore, their preference to form normal or inverse spinel structure. The ideal behavior of minor and trace elements in the equilibrium pair spinel-magnetite explains why the formation of non-porous chromite rims, with inverse spinel structure, modified the composition of cores from zoned chromite, with normal spinel structure

    Caracterizaci贸n mineral贸gica, textural y qu铆mica de la mina "El Fraile", Cordillera Ib茅rica

    Get PDF
    The goals of this work are to perform a mineralogical, textural and chemistry characterization of the El Fraile mine (Iberian Range) and to make a comparison between several similar ore deposits. In order to achieve these objectives, different techniques and methodologies (field work, optical microscopy and field emission scanning electron microscopy) have been carried out. The El Fraile mine consists of a mineralization vein-type that fills a trend fault E-W with an approximate length of 150m. It is hosted by Cambric-Ordovician materials. The host rock is a quartzarenite with bioclasts. The mineralogy consist on primary minerals as galena (PbS), bournonite (PbCuSbS3) and minor amounts of sphalerite (ZnS) and plumosite (~Pb2Sb2S5). The gangue minerals are quartz and siderite, along with secondary minerals as anglesite (PbSO4) and covellite (CuS). From a textural and chemical point of view, two types of galena have been recognized: the earlier (Gn1), with an almost stoichiometric composition and related with bournonite, and the later (Gn2), Sb-rich and formed by replacement of plumosite. Taking into account the mineral assemblage, the form and structure of the deposit, as well as the host rock lithology, a comparison with the classification proposed by Gumiel and Arribas (1987) for the antimony deposits in the Iberian Peninsula has been made. Although there are several significant differences, the Fraile mine could be compared to the association quartz-Pb-Sb-Ag. Furthermore, Garc铆a et al. (1988) studied two similar deposits close to El Fraile mine, Leonor and Arag贸n mines, stablishing four depositional stages, with a different mineral assemblage from that studied in this work, which could indicate either a different hydrothermal system or sampling problems
    corecore