363 research outputs found

    The Gallant 71st : A March

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2615/thumbnail.jp

    The Stricken City

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6775/thumbnail.jp

    Charge dynamics of a single donor coupled to a few electrons quantum dot in silicon

    Full text link
    We study the charge transfer dynamics between a silicon quantum dot and an individual phosphorous donor using the conduction through the quantum dot as a probe for the donor ionization state. We use a silicon n-MOSFET (metal oxide field effect transistor) biased near threshold in the SET regime with two side gates to control both the device conductance and the donor charge. Temperature and magnetic field independent tunneling time is measured. We measure the statistics of the transfer of electrons observed when the ground state D0 of the donor is aligned with the SET states

    Giant g factor tuning of long-lived electron spins in Ge

    Get PDF
    Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the highly desirable but contrasting requirements of spin robustness to relaxation mechanisms and sizeable coupling between spin and orbital motion of charge carriers. Here we focus on Ge, which, by matching those criteria, is rapidly emerging as a prominent candidate for shuttling spin quantum bits in the mature framework of Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome such fundamental limitations by investigating a two dimensional electron gas (2DEG) confined in quantum wells of pure Ge grown on SiGe-buffered Si substrates. These epitaxial systems demonstrate exceptionally long spin relaxation and coherence times, eventually unveiling the potential of Ge in bridging the gap between spintronic concepts and semiconductor device physics. In particular, by tuning spin-orbit interaction via quantum confinement we demonstrate that the electron Land\'e g factor and its anisotropy can be engineered in our scalable and CMOS-compatible architectures over a range previously inaccessible for Si spintronics

    Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis

    Get PDF
    Background: The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. Main body: In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. Conclusion: The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc

    PTEN as a Prognostic/Predictive Biomarker in Cancer: An Unfulfilled Promise?

    Get PDF
    Abstract Identifying putative biomarkers of clinical outcomes in cancer is crucial for successful enrichment, and for the selection of patients who are the most likely to benefit from a specific therapeutic approach. Indeed, current research in personalized cancer therapy focuses on the possibility of identifying biomarkers that predict prognosis, sensitivity or resistance to therapies. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates several crucial cell functions such as proliferation, survival, genomic stability and cell motility through both enzymatic and non-enzymatic activities and phosphatidylinositol 3-kinase (PI3K)-dependent and -independent mechanisms. Despite its undisputed role as a tumor suppressor, assessment of PTEN status in sporadic human tumors has yet to provide clinically robust prognostic, predictive or therapeutic information. This is possibly due to the exceptionally complex regulation of PTEN function, which involves genetic, transcriptional, post-transcriptional and post-translational events. This review shows a brief summary of the regulation and function of PTEN and discusses its controversial aspects as a prognostic/predictive biomarker

    Universal response of the type-II Weyl semimetals phase diagram

    Get PDF
    The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class where we find a stoichiometry-dependent phase transition from a trivial to a non-trivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasi-particle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically non-trivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node significantly altering the pristine low-energy Weyl spectrum. Visualizing the microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide a unifying picture of the Weyl phase diagram
    • …
    corecore