364 research outputs found

    Two-loop electroweak top corrections: are they under control?

    Get PDF
    The assumption that two-loop top corrections are well approximated by the O(Gmu2mt4)O(G_mu^2 mt^4) contribution is investigated. It is shown that in the case of the ratio neutral-to-charged current amplitudes at zero momentum transfer the O(Gmu2mt2MZ2)O(G_mu^2 mt^2 M_Z^2) terms are numerically comparable to the mt4m_t^4 contribution for realistic values of the top mass. An estimate of the theoretical error due to unknown two-loop top effect is presented for a few observables of LEP interest.Comment: 13 pages, LaTeX using equations, doublespace, cite macros. Hard copies of the paper including one figure are available from [email protected]

    Deep learning in edge: evaluation of models and frameworks in ARM architecture

    Get PDF
    The boom and popularization of edge devices have molded its market due to stiff compe tition that provides better functionalities at low energy costs. The ARM architecture has been unanimously unopposed in the huge market segment of smartphones and still makes a presence beyond that: in drones, surveillance systems, cars, and robots. Also, it has been used successfully for the development of solutions for chains that supply food, fuel, and other services. Up until recently, ARM did not show much promise for high-level compu tation, i.e., thanks to its limited RISC instruction set, it was considered power efficient but weak in performance compared to x86 architecture. However, most recent advancements in ARM architecture pivoted that inflection point up thanks to the introduction of embed ded GPUs with DMA into LPDDR memory boards. Since this development in boards such as NVIDIA TK1, NVIDIA Jetson TX1, and NVIDIA TX2, perhaps it finally be came feasible to study and perform more challenging parallel and distributed workloads directly on a RISC-based architecture. On the other hand, the novelty of this technology poses a fundamental question of whether these boards are gaining a meaningful ratio be tween processing power and power consumption over conventional architectures or if they are bound to have reached their limitations. This work explores the Parallel Processing of Deep Learning on embedded GPUs of NVIDIA Jetson TX2 to evaluate the question above comprehensively. Thus, it uses 4 ARM boards, with 2 Deep Learning frameworks, 7 CNN models, and one medium-sized dataset combined into six board settings to con duct experiments. The experiments were conducted under similar environments, all built from the source. Altogether, the experiments ran for a total of 4,804 hours and revealed a slight advantage for MxNet on GPU-reliant training and a PyTorch overall advantage in total execution time and power, but especially for CPU-only executions. The experi ments also showed that the NVIDIA Jetson TX2 already makes feasible some complex workloads directly on its SoC

    The Landau Distribution for Charged Particles Traversing Thin Films

    Full text link
    The Landau distribution as well as its first and second momenta are well suited for describing the energy loss of charged particles traversing a thin layer of matter. At present, just rational approximations and asymptotic expressions for these functions were obtained. In this paper we present a direct calculation of the integral representation of these functions obtaining perturbative and nonperturvative solutions expressed in terms of fast convergent series. We also provide a simple numerical algorithm which allows to control speed and precision of the results. The testing runs have provided, in reasonable computing times, correct results up to 13-14 significant digits on the density and distribution functions and 9-10 on the first and second momenta. If necessary, this accuracy could be improved by adding more coefficients to the algorithm.Comment: 29 pages, 4 Table

    Radiative decays of mesons in the NJL model

    Get PDF
    We revisit the theoretical predictions for anomalous radiative decays of pseudoscalar and vector mesons. Our analysis is performed in the framework of the Nambu-Jona-Lasinio model, introducing adequate parameters to account for the breakdown of chiral symmetry. The results are comparable with those obtained in previous approaches.Comment: 19 pages incl. 4 figure

    Medium Effects in DIS from Polarized Nuclear Targets

    Get PDF
    The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in medium nucleon, related to the low energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment.Comment: 11 pages and 5 figure
    • …
    corecore