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Abstract

The assumption that two-loop top corrections are well approximated by the

O(G2
µm4

t ) contribution is investigated. It is shown that in the case of the ratio

neutral-to-charged current amplitudes at zero momentum transfer the O(G2
µm2

t M
2
Z)

terms are numerically comparable to the m4
t contribution for realistic values of the

top mass. An estimate of the theoretical error due to unknown two-loop top effect

is presented for a few observables of LEP interest.
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1 Introduction

The constant improvement of the experimental precision on line shape and asymmetry

parameters at LEP has stimulated the evaluation of two-loop corrections of a purely

electroweak nature in order to assess the reliability of the theoretical predictions. Although

the latter seem to be affected mainly by the uncertainty of the hadronic contribution on

∆α, it is not yet clear which error may be attributed to the ignorance of higher orders in

the electroweak perturbative expansion. The first attempt made in this direction was the

computation of the Higgs contribution to the ρ parameter in the limit of large MH [1].

Subsequently, top effects were also investigated [2]. Concerning the top, we only have

at the moment two-loop results obtained from the SM in the limit of vanishing gauge

coupling constants [3–5]. Such contributions are of O(G2
µm

4
t ) and formally leading in

the limit of large top mass. They should be considered as the present best estimate of

the top influence on higher-order corrections. This note deals with the next-to-leading

corrections of O(G2
µm

2
t M

2
Z
). Such terms are suppressed by a power M2

Z
/m2

t with respect

to the leading ones, but the present range of values for mt [6, 7] does not exclude that

these corrections may be numerically important. Our computation can be regarded as

an attempt to check the validity of such an expansion, until the full two-loop results are

available. At the same time we should be able to provide a more realistic estimate of the

error associated with the two-loop electroweak effects.

To keep the computation as simple as possible we have focused on neutrino scattering

on a leptonic target, of which we will compute the electroweak corrections of O(G2
µm

2
t M

2
Z
)

to the ρ parameter, defined as the ratio of neutral-to-charged current amplitudes, at zero

momentum transfer. To be more precise, we identify ρ with the cofactor, expressed in

units of Gµ, the µ-decay constant, of the JZ JZ interaction in neutral current amplitudes.

It is well known that radiative effects also lead to a modification of the mixing angle,

described by a parameter usually called κ. These effects will not be discussed in the

present paper.

For the processes under examination, we found large subleading corrections of the

same sign and of about the same magnitude as the leading one. Therefore, at least for

the case we have investigated, the use of the first term of an expansion in inverse power
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of mt to approximate the full two-loop result appears to be doubtful. Our result, being

obtained at q2 = 0, cannot be directly applied to LEP physics, but can give us a flavour

of the size of subleading effects that are due to one-particle irreducible contributions. In

the concluding Section, we will elaborate this point, analysing the consequences of a näıve

extrapolation of our result to some LEP observables.

2 O(G2
µm

2
tM

2
Z
) corrections to the ρ parameter.

In this Section we outline the computation of the electroweak corrections of O(G2
µm

2
t M

2
Z
)

to the ρ parameter. We begin by writing the relation between the µ-decay constant and

the charged current amplitude expressed in terms of bare quantities. At the two-loop

level, neglecting contributions that will not give O(G2
µm

2
tM

2
Z
) terms, we have

Gµ√
2

=
g2
0

8M2
W0

{

1 −
AW W

M2
W0

+ VW + M2
W0

BW +
AWW

2

M4
W

−
AWW VW

M2
W

}

, (1)

where g0 and MW0 are the bare SU(2)L coupling and W mass, respectively, AW W is the

transverse part of the W self-energy at zero momentum transfer, and the quantities VW

and BW represent the relevant vertex and box corrections. At the bare level, using the

fact that M2
Z0

c2
0 = M2

W0
, where c0 ≡ cos θW0 with θW0 the weak mixing angle and MZ0 the

bare Z mass, the ρ parameter can be written as:

ρ =

(

1 −
AZZ

M2
Z0

+ VZ + M2
Z0

c2
0BZ +

AZZ

2

M4
Z

−
AZZVZ

M2
Z

)

(

1 −
AW W

M2
W0

+ VW + M2
W0

BW +
AW W

2

M4
W

−
AW W VW

M2
W

) , (2)

where AZZ, VZ and BZ are the corresponding self-energy, vertex, and box contribution in

the neutral current amplitude. To the order we are interested in, Eq. (2) reduces to:

ρ = 1 +

(

AW W

M2
W0

−
AZZ

M2
Z0

)

+ (VZ − VW ) + (M2
W0

+ AW W )(BZ − BW )

+

(

AW W

M2
W

−
AZZ

M2
Z

)(

−
AZZ

M2
Z

+ (VZ − VW ) − M2
W

BW

)

. (3)
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We proceed by separating the self-energies into one-loop and two-loop contributions:

AZZ = A(1)
ZZ

+ A(2)
ZZ

; AW W = A(1)
W W

+ A(2)
WW

, (4)

on the understanding that the one-loop term is still expressed in terms of bare parameters.

The one-loop part can be decomposed further into pure bosonic (b) and fermionic (f)

terms:

A(1)
ZZ

= Ab(1)
ZZ

+ Af(1)
ZZ

; A(1)
W W

= Ab(1)
WW

+ Af(1)
W W

, (5)

and the one-loop fermionic contribution to the ρ parameter, assuming a vanishing bottom

mass, can be expressed as follows:

X0
d =

(

Af

WW

M2
W0

−
Af

ZZ

M2
Z0

)(1)

=
g2
0

8M2
W0

f(m2
t0
, ǫ) (6a)

f(m2
t , ǫ) ≡

3

2π2

1

(4 − 2ǫ)
m2

t ǫ Γ(ǫ)

(

4πµ2

m2
t

)ǫ
. (6b)

where ǫ is related to the dimension d of the space–time by ǫ = (4 − d)/2 and µ is the

’t-Hooft mass scale.

We want to express our final result in terms of the physical Z mass, therefore we

perform the shift M2
Z0

= M2
Z
− Re ΠZZ(M2

Z
), where ΠZZ(M2

Z
) is the transverse part of

the Z self-energy at q2 = M2
Z
. Using the decompositions given in Eqs. (4) and (5), and

keeping only terms up to O(G2
µm

2
t M

2
Z
), we obtain after simple algebra:

ρ = 1 + X0
d + Xd

(

−
AW W

M2
W

+ VW + M2
W

BW

)

+

(

Ab

W W
/c2

0 − Ab

ZZ

M2
Z

)(1)

+

(

AWW

M2
W

−
AZZ

M2
Z

)(2)

+ (VZ − VW ) + M2
Z
c2
0(BZ − BW ) − Xd(VW + 2 M2

W
BW )

+ Xd

[(

AWW

M2
W

−
AZZ

M2
Z

)

+ (VZ − VW ) + M2
W

(BZ − BW )

]

, (7)

where Xd is the same quantity introduced in Eq. (6), but expressed in terms of renormal-

ized parameters.
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We observe that Eq. (7) further simplifies if we express the one-loop fermionic contri-

bution in terms of the Fermi constant Gµ. Indeed, as can be seen from Eq. (1), the first

line of Eq. (7) reproduces the effective coupling in the charged sector:

X0
d

(

1 −
AW W

M2
W

+ VW + M2
W

BW

)

=
g2
0

8M2
W0

(

1 −
AW W

M2
W

+ VW + M2
W

BW

)

f(m2
t0
, ǫ)

≃
Gµ√

2
f(m2

t0 , ǫ) . (8)

Until now, apart from the use of the physical Z mass, we have not specified any particular

renormalization condition. In order to simplify the structure of the counterterms, we

have found it convenient to perform the calculation using the MS parameter sin2 θ̂W (MZ)

(henceforth abbreviated as ŝ2). Indeed, while in the on-shell (OS) scheme the counterterm

associated with the quantity s2 = 1 − M2
W

/M2
Z

contains terms proportional to m2
t and

gives rise to O(G2
µm

2
t M

2
Z
) contributions to ρ, the counterterm related to ŝ2 does not exhibit

any m2
t dependence and this greatly simplifies our task. Therefore, to the order we are

interested in, we can directly replace c2
0 with ĉ2 in Eq. (7) (ĉ2 ≡ 1− ŝ2). It will always be

possible to recover the result in the pure OS scheme, by appropriately shifting ŝ2 in the

one-loop expression for ρ.

We now notice that the one-loop contribution is still written in terms of bare quantities.

To put ρ in its final form, we split it into the usual O(α) result, δρ(1), plus the counterterm

part, δρC, namely

Gµ√
2

f(m2
t0 , ǫ)+

(

Ab

W W
/ĉ2 − Ab

ZZ

M2
Z

)(1)

+(VZ −VW )(1) +M2
Z
ĉ2(BZ −BW )(1) ≡ δρ(1) +δρC (9)

with

δρ(1) = δρf(1) + δρb(1) (10a)

δρf(1) = Ncxt ≡ Nc
Gµm

2
t

8π2
√

2
(10b)

δρb(1) =
α̂

4πŝ2

[

3

4ŝ2
ln ĉ2 −

7

4
+

2 cZ

ĉ2
+ ŝ2 G(ξ, ĉ2)

]

, (10c)

where Nc is the colour factor, and α̂ = α/(1 + 2δe/e)MS is the MS coupling as defined
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in [8]. In Eqs. (10)

cZ =
ĉ2

4
(5 − 3I3) − 3

(

I3

8
−

ŝ2

2
Q + ŝ4 I3 Q2

)

, (11a)

where I3 and Q are the isospin and electric charge of the target (I3 = −1 for electrons)

and

G(ξ, ĉ2) =
3

4

ξ

ŝ2

[

ln ĉ2 − ln ξ

ĉ2 − ξ
+

1

ĉ2

ln ξ

1 − ξ

]

, (11b)

with ξ ≡ M2
H
/M2

Z
. Using eqs. (7), (8), and (9) we can express ρ as follows:

ρ = 1 + δρ(1) + Ncxtδρ
(1) + δρ(2) , (12)

where the previous relation defines the two-loop contribution, δρ(2), as:

δρ(2) = δρC +

(

AWW

M2
W

−
AZZ

M2
Z

)(2)

+ (VZ − VW )(2) + M2
Z
ĉ2(BZ − BW )(2)

− Xd(VW + 2 M2
W

BW ) (13)

Eq. (12) suggests that a possible way to take into account higher-order effects is to write

ρ as

ρ =
1

(1 − δρf(1))
(1 + δρb(1) + δρ(2)) , (14)

where the resummation of δρf(1) can be justified theoretically on the basis of 1/Nc ex-

pansion arguments [9]. Explicitly we find, in units Nc [α̂/(16πŝ2ĉ2) m2
t/M

2
Z
]2 ≃ Ncx

2
t :

δρ(2) = 25 − 4 ht +
(

1

2
−

1

ht

)

π2 +
(−4 + ht)

√
ht g(ht)

2
+

(

−6 − 6 ht +
ht

2

2

)

ln ht

+
(

−15 +
6

ht
+ 12 ht − 3 ht

2
)

Li2 (1 − ht) +

(

−15 + 9 ht −
3 ht

2

2

)

φ

(

ht

4

)

+ zt

[

25

2
+

4

ht
− 10 ĉ2 +

3

ŝ2
+

277 ŝ2

9
−

4 ŝ2

ht
(15a)

+
(

9 +
3

ŝ4
−

6

ŝ2
− 6 ŝ2

)

ln ĉ2 + 3
(

5 − 6 ŝ2
)

ln zt + 6 I3 ĉ2
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+

(

2 −
4

ht
− 8 ŝ2 +

28 ŝ2

ht

)

ln ht + π2

(

−
7

3
−

2

3 ht
2 +

1

ht
−

56 ŝ2

27
+

2 ŝ2

3 ht
2 −

ŝ2

ht

)

+
12 (−4 + ht) ŝ2

ht
Λ

(

−1 +
4

ht

)

+

(

2 ht ĉ2 −
2 (−2 + 3 ht) ĉ2

ht
2

)

Li2 (1 − ht)

+

(

−2 −
8

ht
+ 5 ŝ2 +

24 ŝ2

ht
2 −

10 ŝ2

ht
+ ht ĉ2

)

φ

(

ht

4

)]

, (15b)

for MH ≫ MZ , whilst in the region MH ≪ MZ ,

δρ(2) = 19 − 2 π2 − 4 π
√

ht + ht

(

−
27

2
+ 2 π2 − 6 ln ht − 5 ln ĉ2 + 3 ln zt

)

+ zt

[

−
11

2
+

3

ŝ2
+

319 ŝ2

9
+ 6 I3 ĉ2 + π2

(

−
7

3
−

56 ŝ2

27

)

+
(

7 +
3

ŝ4
−

6

ŝ2
− 4 ŝ2

)

ln ĉ2 +
(

21 − 16 ŝ2
)

ln zt

]

. (15c)

In Eqs. (15) ht ≡ (MH/mt)
2, zt ≡ (MZ/mt)

2,

g(x) =



























√
4 − x

(

π − 2 arcsin
√

x/4
)

0 < x ≤ 4

2
√

x/4 − 1 ln
(

1−
√

1−4/x

1+
√

1−4/x

)

x > 4 ,

(16a)

Λ(−1 +
4

x
) =























− 1
2
√

x
g(x) + π

2

√

4/x − 1 0 < x ≤ 4

− 1
2
√

x
g(x) x > 4 ,

(16b)

Li2(x) = −
∫ x

0
dt

ln(1 − t)

t
, (16c)

and

φ(z) =











4
√

z
1−z

Cl2(2 arcsin
√

z) 0 < z ≤ 1

1
λ

[

−4Li2(
1−λ

2
) + 2 ln2(1−λ

2
) − ln2(4z) + π2/3

]

z > 1 ,
(16d)
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where Cl2(x) = Im Li2(e
ix) is the Clausen function with

λ =

√

1 −
1

z
. (16e)

The first two lines of eq. (15b) represent the leading O(G2
µm

4
t ) result [3], which is com-

pletely independent of the gauge sector of the theory. Indeed this part can be computed

in the framework of a pure Yukawa theory, obtained from the SM in the limit of vanish-

ing gauge coupling constants. The rest of eq. (15b) is proportional to zt = M2
Z
/m2

t and

represents the first correction to the Yukawa limit. Eqs. (15) show a process-dependent

contribution, i.e. 6 zt I3 ĉ2 that comes from BZ

(2). This reflects the fact that, already at

one-loop, the box diagrams in neutral current depend on the process under considera-

tion [10] [cf. Eq. (11a)].

3 Numerical results

In the previous Section we derived the expression for the ρ parameter up to O(G2
µm

2
t M

2
Z
)

in the MS scheme. We expressed our result in terms of the MS quantities α̂, ŝ2, and the

physical mass of the Z boson. To obtain the corresponding expressions in terms of Gµ

and the on-shell (OS) parameter c2 ≡ M2
W

/M2
Z

, we use the relations [8]

α̂

4πŝ2 =
GµM

2
W

2
√

2π2

1 − ∆r̂W

1 + (2δe
e

)MS

≃
GµM

2
Z
c2

2
√

2π2
(17a)

ĉ2 = c2(1 − YMS) ≃ c2(1 − Ncxt) . (17b)

Eq. (17b) will create additional contributions to δρ(2). The one-loop result is then given

by Eqs. (10) with the substitutions α̂/(4πŝ2) → (GµM
2
Z
c2)/(2

√
2π2), ŝ2, ĉ2 → s2, c2,

while for the two-loop contribution we have

δρ(2)

OS
= δρ(2)(ŝ2, ĉ2 → s2, c2)

+ Ncx
2
t zt

[

−
3c4

s4
ln c2 −

3c2

s2
− 3I3 + 12Q − 24s2(1 + c2)I3Q

2 + 4c2G′(ξ, c2)

]

(18a)

7



Table 1

δρ(2) (MS) and δρ(2)
OS

(OS) relevant to νµ e scattering for zt ≡ M2
Z
/m2

t = 0.2, 0.3, in units
Ncx

2
t as a function of r = MH/mt. The column zt = 0 is the result of the Yukawa theory.

MS OS

r =
MH

mt
zt = 0 zt = 0.2 zt = 0.3 zt = 0.2 zt = 0.3

0.1 − 1.8 –12.6 –15.8 –12.7 –16.0
0.2 − 2.7 –13.3 –16.5 –13.5 –16.8
0.3 − 3.5 –13.9 –17.0 –14.2 –17.4
0.4 − 4.1 –14.5 –17.6 –14.9 –18.1
0.5 − 4.7 –15.2 –18.3 –15.7 –18.9
0.6 − 5.2 –16.1 –20.2 –16.7 –20.9
0.7 − 5.7 –16.2 –20.1 –16.9 –20.9
0.8 − 6.2 –16.4 –20.1 –17.1 –21.0
0.9 − 6.6 –16.5 –20.1 –17.4 –21.2
1.0 − 6.9 –16.6 –20.1 –17.6 –21.3
1.1 − 7.3 –16.8 –20.2 –17.8 –21.4
1.2 − 7.6 –16.9 –20.2 –18.0 –21.6
1.3 − 7.9 –17.0 –20.2 –18.2 –21.7
1.4 − 8.2 –17.2 –20.3 –18.4 –21.9
1.5 − 8.4 –17.3 –20.3 –18.6 –22.0
1.6 − 8.7 –17.4 –20 4 –18.7 –22.1
1.7 − 8.9 –17.5 –20.5 –18.9 –22.3
1.8 − 9.1 –17.6 –20.5 –19.1 –22.4
1.9 − 9.3 –17.7 –20.6 –19.2 –22.6
2.0 − 9.5 –17.8 –20.6 –19.4 –22.7
2.5 −10.2 –18.2 –20.9 –20.0 –23.3
3.0 −10.8 –18.4 –20.8 –20.4 –23.5
3.5 −11.2 –18.3 –20.6 –20.6 –23.6
4.0 −11.4 –18.3 –20.4 –20.6 –23.5
4.5 −11.6 –18.2 –20.1 –20.6 –23.4
5.0 −11.7 –18.0 –19.8 –20.5 –23.3
5.5 −11.8 –17.8 –19.4 –20.4 –23.1
6.0 −11.8 –17.5 –19.0 –20.3 –22.9

where

G′(ξ, c2) =
3

4
ξ

[

c2 ln(c2/ξ)

(c2 − ξ)2
−

1

c2 − ξ
+

1

c2

ln ξ

1 − ξ

]

. (18b)

In Eq. (18a) δρ(2)(ŝ2, ĉ2 → s2, c2) represents a term obtained from Eqs. (15) applying

the same substitutions as in the one-loop case.

From Eq. (18a) we notice that the process-dependence is more pronounced in the OS

framework. This is easily understood by noticing that the expansion of the bare couplings

in the one-loop box diagrams gives rise, unlike the MS case, to m2
t contributions.

In Fig. 1 we plot δρ(2) [Eqs. (15)] as a function of mt for few values of MH . As a

comparison we also show the values obtained including only the O(G2
µm

4
t ) contribution.
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The process under consideration is νµ e scattering. From Figure 1 it is evident that the

inclusion of corrections suppressed by a factor M2
Z
/m2

t with respect to the leading term

is quite substantial.

To have a better understanding of the size of these corrections in Table 1 we present

the values of δρ(2) and δρ(2)
OS

for zt = 0, 0.2, and 0.3 as a function of r = MH/mt. When

preparing the Table we matched the values from (15b) and (15c) when the latter were

very close (r ≃ 0.5). We see that in the region of light Higgs the O(G2
µm

2
t M

2
Z
) corrections

are much larger than the m4
t term that is actually suppressed by accidental cancellations,

while for large Higgs mass, in the TeV region, their contribution is still 50% of the leading

part. It is worth noticing that the numbers shown in Table 1 are very close to the

corresponding ones obtained in Ref. [11] in the case of a model with SU(2) symmetry.

That is not surprising ŝ being a relatively small number (ŝ2 ≃ 0.23).

4 Conclusions

We have seen that the calculation of the difference of self-energies is not sufficient to

compute the O(G2
µm

2
t M

2
Z
) corrections to the ρ parameter [cf. Eq. (13)] but one has to

resort to physical processes and this introduces process-dependent quantities. Our result,

being obtained at q2 = 0, cannot be directly applied to LEP physics. However one can

ask general questions about the two-loop electroweak corrections involving the top and

use the answers coming from the calculation of δρ(2) as a “ringing bell” for the estimation

of the theoretical error in the present knowledge of these corrections.

It is natural to ask whether we can expect that the O(G2
µm

4
t ) term will approximate

well the complete unknown result for values of mt not larger than 250 GeV. Table 1

shows that in the case of δρ(2) the answer is negative. We have looked for the asymptotic

regime of the top, namely for which value of mt δρ(2) begins to be close to the O(G2
µm

4
t )

contribution. We found that, typically, δρ(2) starts to be within 10% the leading m4
t value

for mt ≃ 800 GeV.

To consider the top as an asymptotically heavy particle can be an unrealistic assump-

tion also for electroweak quantities of LEP interest, like ∆r [12] and ∆r̂ [8,13]. It is then

important to have a feeling of how large the theoretical error one is making can be when

9



Table 2

Calculated ratio (R), for few values of mt and MH , between the O(G2
µm

2
t M

2
Z
) and the

O(G2
µm

4
t ) contributions in δρ(2). The corresponding estimate of the shifts in the W mass

and sin2 θlep
eff are also presented (see text).

mt MH R ∆MW ∆sin2 θlep
eff

(GeV) (GeV) % (MeV) (10−4)

65 247 –10 0.6
150 250 100 –8 0.5

800 35 –4 0.2
65 234 –16 0.9

175 250 94 –14 0.8
800 38 –8 0.5
65 221 –23 1.4

200 250 88 –20 1.2
800 38 –13 0.7

these quantities are computed including only the O(G2
µm

4
t ) correction. A possible way

to obtain this is to assume that the ratio between the O(G2
µm

2
t M

2
Z
) and the O(G2

µm
4
t )

contributions in δρ(2) can be representative of the unknown two-loop top effects in ∆r

and ∆r̂. We can then use this ratio to estimate the additional contributions to ∆r and

∆r̂ simply multiplying it by the known O(G2
µm

4
t ) terms of these quantities. The shifts in

the W mass and the effective sinus, sin2 θlep
eff , due to these additional contributions can

be estimated from the relations

∆ MW

MW

= −
s2

2(c2 − s2)
δ(∆r)

∆ sin2 θlep
eff =

ŝ2ĉ2

ĉ2 − ŝ2 δ(∆r̂) + ŝ2δk̂l(M
2
Z
) ,

where the correction k̂l is defined in [14].

In Table 2 we show, for few values of mt and MH , the effect of our estimate of the

unknown top contributions on the W mass and sin2 θlep
eff . In our estimate we have put

δk̂l = 0. The ratio between subleading and leading terms in δρ(2) has been computed

using expressions slightly different from Eqs. (15). In fact, we decided to maximize the

one-loop result of our MS calculation by writing it in terms of the physical masses of

10



both W and Z. Such a procedure is frequently used in one-loop calculations [8], and in

our case has the further advantage of eliminating the process-dependent terms. From

the third column, it can immediately be seen that, for a fixed value of the top mass, the

effect is more pronounced for light Higgs. This is not surprising, bearing in mind the fact

that the O(G2
µm

4
t ) term is a monotonically increasing (in modulus) function of MH .

We want to stress that the numbers presented in Table 2, more than a definite estimate

of the shifts in MW and sin2 θlep
eff should be taken as an indication that subleading two-

loop mt effects could be larger than what is “näıvely” expected. Their size is probably

comparable to, or may be larger than, the theoretical uncertainty due to the hadronic

contribution to the photonic self-energy. The latter amounts to ±16 MeV and ±3× 10−4

in MW and sin2 θlep
eff , respectively.

To conclude, we think that our calculation of δρ(2) shows that it is questionable to be-

lieve that two-loop electroweak top contributions are well approximated by the O(G2
µm

4
t )

term and therefore sufficiently under control. However, the possibility of establishing top

effects of a purely electroweak nature at the two-loop level seems quite remote. The ex-

perimental accuracy envisaged for the W mass is (δMW )exp = ±50 MeV, whilst sin2 θlep
eff is

presently known with a precision (δ sin2 θlep
eff )exp ≡ ±4×10−4. At this level of precision it is

likely that only QCD corrections to one-loop top contribution can be relevant. However,

if the experimental precision improves in the future to reach (δ sin2 θlep
eff )exp = ±2 × 10−4,

or ±1 × 10−4, then a meaningful theoretical interpretation will require a complete study

of two-loop top effect of electroweak nature.
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