37 research outputs found
Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating
Magnetic hyperthermia is a new type of cancer treatment designed for overcoming resistance to chemotherapy during the treatment of solid, inaccessible human tumors. The main challenge of this technology is increasing the local tumoral temperature with minimal side effects on the surrounding healthy tissue. This work consists of an in vitro study that compared the effect of hyperthermia in response to the application of exogenous heating (EHT) sources with the corresponding effect produced by magnetic hyperthermia (MHT) at the same target temperatures. Human neuroblastoma SH-SY5Y cells were loaded with magnetic nanoparticles (MNPs) and packed into dense pellets to generate an environment that is crudely similar to that expected in solid micro-tumors, and the above-mentioned protocols were applied to these cells. These experiments showed that for the same target temperatures, MHT induces a decrease in cell viability that is larger than the corresponding EHT, up to a maximum difference of approximately 45% at T = 46 °C. An analysis of the data in terms of temperature efficiency demonstrated that MHT requires an average temperature that is 6 °C lower than that required with EHT to produce a similar cytotoxic effect. An analysis of electron microscopy images of the cells after the EHT and MHT treatments indicated that the enhanced effectiveness observed with MHT is associated with local cell destruction triggered by the magnetic nano-heaters. The present study is an essential step toward the development of innovative adjuvant anti-cancer therapies based on local hyperthermia treatments using magnetic particles as nano-heaters
Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics
Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that interact and dissociate the tubulin dimer. Here we show how TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO– present in TBCB, which is similar to the EEY/F-COO– element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE–TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated to microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation
Faithful chaperones
This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed
Novel Interactions between Actin and the Proteasome Revealed by Complex Haploinsufficiency
Saccharomyces cerevisiae has been a powerful model for uncovering the landscape of binary gene interactions through whole-genome screening. Complex heterozygous interactions are potentially important to human genetic disease as loss-of-function alleles are common in human genomes. We have been using complex haploinsufficiency (CHI) screening with the actin gene to identify genes related to actin function and as a model to determine the prevalence of CHI interactions in eukaryotic genomes. Previous CHI screening between actin and null alleles for non-essential genes uncovered ∼240 deleterious CHI interactions. In this report, we have extended CHI screening to null alleles for essential genes by mating a query strain to sporulations of heterozygous knock-out strains. Using an act1Δ query, knock-outs of 60 essential genes were found to be CHI with actin. Enriched in this collection were functional categories found in the previous screen against non-essential genes, including genes involved in cytoskeleton function and chaperone complexes that fold actin and tubulin. Novel to this screen was the identification of genes for components of the TFIID transcription complex and for the proteasome. We investigated a potential role for the proteasome in regulating the actin cytoskeleton and found that the proteasome physically associates with actin filaments in vitro and that some conditional mutations in proteasome genes have gross defects in actin organization. Whole-genome screening with actin as a query has confirmed that CHI interactions are important phenotypic drivers. Furthermore, CHI screening is another genetic tool to uncover novel functional connections. Here we report a previously unappreciated role for the proteasome in affecting actin organization and function
Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them
Combined linkage and linkage disequilibrium analysis of a motor speech phenotype within families ascertained for autism risk loci
Using behavioral and genetic information from the Autism Genetics Resource Exchange (AGRE) data set we developed phenotypes and investigated linkage and association for individuals with and without Autism Spectrum Disorders (ASD) who exhibit expressive language behaviors consistent with a motor speech disorder. Speech and language variables from Autism Diagnostic Interview-Revised (ADI-R) were used to develop a motor speech phenotype associated with non-verbal or unintelligible verbal behaviors (NVMSD:ALL) and a related phenotype restricted to individuals without significant comprehension difficulties (NVMSD:C). Using Affymetrix 5.0 data, the PPL framework was employed to assess the strength of evidence for or against trait-marker linkage and linkage disequilibrium (LD) across the genome. Ingenuity Pathway Analysis (IPA) was then utilized to identify potential genes for further investigation. We identified several linkage peaks based on two related language-speech phenotypes consistent with a potential motor speech disorder: chromosomes 1q24.2, 3q25.31, 4q22.3, 5p12, 5q33.1, 17p12, 17q11.2, and 17q22 for NVMSD:ALL and 4p15.2 and 21q22.2 for NVMSD:C. While no compelling evidence of association was obtained under those peaks, we identified several potential genes of interest using IPA. Conclusion: Several linkage peaks were identified based on two motor speech phenotypes. In the absence of evidence of association under these peaks, we suggest genes for further investigation based on their biological functions. Given that autism spectrum disorders are complex with a wide range of behaviors and a large number of underlying genes, these speech phenotypes may belong to a group of several that should be considered when developing narrow, well-defined, phenotypes in the attempt to reduce genetic heterogeneity
Regulated expression of p14 (cofactor A) during spermatogenesis
The correct folding of tubulins and the generation of functional αβ-tubulin heterodimers require the participation of a series of recently described molecular chaperones and CCT (or TRiC), the cytosolic chaperonin containing TCP-1. p14 (cofactor A) is a highly conserved protein that forms stable complexes with β-tubulin which are not apparently indispensable along the in vitro β-tubulin folding route. Consequently, the precise role of p14 is still unknown, though findings on Rbl2p (its yeast homologue) suggest p14 might play a role in meiosis and/or perhaps to serve as an excess β-tubulin reservoir in the cell. This paper investigates the in vivo possible role of p14 in testis where mitosis, meiosis, and intense microtubular remodeling processes occur. Our results confirm that p14 is more abundantly expressed in testis than in other adult mammalian tissues. Northern blot, Western blot, in situ hybridization, and immunocytochemical analyses have all demonstrated that p14 is progressively upregulated from the onset of meiosis through spermiogenesis, being more abundant in differentiating spermatids. The close correlation observed between the mRNA expression waves for p14 and testis specific tubulin isotypes β3 and α3/7, together with the above results, suggest that p14 role in testis would presumably be associated to β-tubulin processing rather than meiosis itself. Additional in vitro β3-tubulin synthesis experiments have shown that p14 plays a double role in β-tubulin folding, enhancing the dimerization of newly synthesized β-tubulin isotypes as well as capturing excess β-tubulin monomers. The above evidence suggests that p14 is a chaperone required for the actual β-tubulin folding process in vivo and storage of excess β-tubulin in situations, such as in testis, where excessive microtubule remodeling could lead to a disruption of the α-β balance. As seen for other chaperones, p14 could also serve as a route to lead excess β-tubulin or replaced isotypes towards degradation.Contract grant sponsor: Caja Cantabria/Universidad de Cantabria; Contract grant numbers: DGICYT (Ministry of Education) PB97–0350, DGICYT PB95–0119, EC (European Commission) PL96–0183, and CAM (Caja ahorros, Madrid) 07/0022.Peer reviewe
Fratribus Homosexuality and creativity in the fiction of E M Forster
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN007415 / BLDSC - British Library Document Supply CentreGBUnited Kingdo