5,784 research outputs found

    Testing for a Cultural Influence on Reading for Meaning in the Developing Brain: The Neural Basis of Semantic Processing in Chinese Children

    Get PDF
    Functional magnetic resonance imaging was used to explore the neural correlates of semantic judgments in a group of 8- to 15-year-old Chinese children. Participants were asked to indicate if pairs of Chinese characters presented visually were related in meaning. The related pairs were arranged in a continuous variable according to association strength. Pairs of characters with weaker semantic association elicited greater activation in the mid ventral region (BA 45) of left inferior frontal gyrus, suggesting increased demands on the process of selecting appropriate semantic features. By contrast, characters with stronger semantic association elicited greater activation in left inferior parietal lobule (BA 39), suggesting stronger integration of highly related features. In addition, there was a developmental increase, similar to previously reported findings in English, in left posterior middle temporal gyrus (BA 21), suggesting that older children have more elaborated semantic representations. There were additional age-related increases in the posterior region of left inferior parietal lobule and in the ventral regions of left inferior frontal gyrus, suggesting that reading acquisition relies more on the mapping from orthography to semantics in Chinese children as compared to previously reported findings in English

    Acquiring Weak Annotations for Tumor Localization in Temporal and Volumetric Data

    Full text link
    Creating large-scale and well-annotated datasets to train AI algorithms is crucial for automated tumor detection and localization. However, with limited resources, it is challenging to determine the best type of annotations when annotating massive amounts of unlabeled data. To address this issue, we focus on polyps in colonoscopy videos and pancreatic tumors in abdominal CT scans; both applications require significant effort and time for pixel-wise annotation due to the high dimensional nature of the data, involving either temporary or spatial dimensions. In this paper, we develop a new annotation strategy, termed Drag&Drop, which simplifies the annotation process to drag and drop. This annotation strategy is more efficient, particularly for temporal and volumetric imaging, than other types of weak annotations, such as per-pixel, bounding boxes, scribbles, ellipses, and points. Furthermore, to exploit our Drag&Drop annotations, we develop a novel weakly supervised learning method based on the watershed algorithm. Experimental results show that our method achieves better detection and localization performance than alternative weak annotations and, more importantly, achieves similar performance to that trained on detailed per-pixel annotations. Interestingly, we find that, with limited resources, allocating weak annotations from a diverse patient population can foster models more robust to unseen images than allocating per-pixel annotations for a small set of images. In summary, this research proposes an efficient annotation strategy for tumor detection and localization that is less accurate than per-pixel annotations but useful for creating large-scale datasets for screening tumors in various medical modalities.Comment: Published in Machine Intelligence Researc

    Relationships among Constitution, Stress, and Discomfort in the First Trimester

    Get PDF
    The purpose of this study was to explore correlations among constitution, stress, and discomfort symptoms during the first trimester of pregnancy. We adopted a descriptive and correlational research design and collected data from 261 pregnant women during their first trimester in southern Taiwan using structured questionnaires. Results showed that (1) stress was significantly and positively correlated with Yang-Xu, Yin-Xu, and Tan-Shi-Yu-Zhi constitutions, respectively; (2) Yin-Xu and Tan-Shi-Yu-Zhi constitutions had significant correlations with all symptoms of discomfort, while Yang-Xu had significant correlations with all symptoms of discomfort except for “running nose”; (3) Tan-Shi-Yu-Zhi constitution and stress were two indicators for “fatigue”; Tan-Shi-Yu-Zhi was the indicator for “nausea”; Yang-Xu and Yin-Xu were indicators for “frequent urination.” Our findings also indicate that stress level affects constitutional changes and that stress and constitutional change affect the incidence of discomfort. This research can help healthcare professionals observe these discomforts and provide individualized care for pregnant women, to nurture pregnant women into neutral-type constitution, minimize their levels of discomfort, and promote the health of the fetus and the mother

    Effects of Noise Electrical Stimulation on Proprioception, Force Control, and Corticomuscular Functional Connectivity

    Get PDF
    Sensory afferent inputs play an important role in neuromuscular functions. Subsensory level noise electrical stimulation enhances the sensitivity of peripheral sensory system and improves lower extremity motor function. The current study aimed to investigate the immediate effects of noise electrical stimulation on proprioceptive senses and grip force control, and whether there are associated neural activities in the central nervous system. Fourteen healthy adults participated in 2 experiments on 2 different days. In day 1, participants performed grip force and joint proprioceptive tasks with and without (sham) noise electrical stimulation. In day 2, participants performed grip force steady hold task before and after 30-min noise electrical stimulation. Noise stimulation was applied with surface electrodes secured along the course of the median nerve and proximal to the coronoid fossa EEG power spectrum density of bilateral sensorimotor cortex and coherence between EEG and finger flexor EMG were calculated and compared. Wilcoxon Signed-Rank Tests were used to compare the differences of proprioception, force control, EEG power spectrum density and EEG-EMG coherence between noise electrical stimulation and sham conditions. The significance level (alpha) was set at 0.05. Our study found that noise stimulation with optimal intensity could improve both force and joint proprioceptive senses. Furthermore, individuals with higher gamma coherence showed better force proprioceptive sense improvement with 30-min noise electrical stimulation. These observations indicate the potential clinical benefits of noise stimulation on individuals with impaired proprioceptive senses and the characteristics of individuals who might benefit from noise stimulation

    Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns

    Get PDF
    Background: The current study examined the neuro-cognitive network of visual word rhyming judgment in 14 children with dyslexia and 14 age-matched control children (8-to 14-year-olds) using functional magnetic resonance imaging (fMRI). Methods: In order to manipulate the difficulty of mapping orthography to phonology, we used conflicting and non-conflicting trials. The words in conflicting trials either had similar orthography but different phonology (e.g., pint-mint) or similar phonology but different orthography (e.g., jazz-has). The words in non-conflicting trials had similar orthography and phonology (e.g., gate-hate) or different orthography and phonology (e.g., presslist). Results: There were no differences in brain activation between the controls and children with dyslexia in the easier non-conflicting trials. However, the children with dyslexia showed less activation than the controls in left inferior frontal gyrus (BA 45/44/47/9), left inferior parietal lobule (BA 40), left inferior temporal gyrus/fusiform gyrus (BA 20/37) and left middle temporal gyrus (BA 21) for the more difficult conflicting trials. For the direct comparison of conflicting minus non-conflicting trials, controls showed greater activation than children with dyslexia in left inferior frontal gyrus (BA 9/45/46) and medial frontal gyrus (BA 8). Children with dyslexia did not show greater activation than controls for any comparison. Conclusions: Reduced activation in these regions suggests that children with dyslexia have deficient orthographic representations in ventral temporal cortex as well as deficits in mapping between orthographic and phonological representations in inferior parietal cortex. The greater activation for the controls in inferior frontal gyrus could reflect more effective top-down modulation of posterior representations

    MicroRNA-483 amelioration of experimental pulmonary hypertension.

    Get PDF
    Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses

    GolgiP: prediction of Golgi-resident proteins in plants

    Get PDF
    Summary: We present a novel Golgi-prediction server, GolgiP, for computational prediction of both membrane- and non-membrane-associated Golgi-resident proteins in plants. We have employed a support vector machine-based classification method for the prediction of such Golgi proteins, based on three types of information, dipeptide composition, transmembrane domain(s) (TMDs) and functional domain(s) of a protein, where the functional domain information is generated through searching against the Conserved Domains Database, and the TMD information includes the number of TMDs, the length of TMD and the number of TMDs at the N-terminus of a protein. Using GolgiP, we have made genome-scale predictions of Golgi-resident proteins in 18 plant genomes, and have made the preliminary analysis of the predicted data

    Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study

    Get PDF
    BACKGROUND: Patients with carbon monoxide (CO) intoxication may develop ongoing neurological and psychiatric symptoms that ebb and flow, a condition often called delayed encephalopathy (DE). The association between morphologic changes in the brain and neuropsychological deficits in DE is poorly understood. METHODS: Magnetic resonance imaging and neuropsychological tests were conducted on 11 CO patients with DE, 11 patients without DE, and 15 age-, sex-, and education-matched healthy subjects. Differences in gray matter volume (GMV) between the subgroups were assessed and further correlated with diminished cognitive functioning. RESULTS: As a group, the patients had lower regional GMV compared to controls in the following regions: basal ganglia, left claustrum, right amygdala, left hippocampus, parietal lobes, and left frontal lobe. The reduced GMV in the bilateral basal ganglia, left post-central gyrus, and left hippocampus correlated with decreased perceptual organization and processing speed function. Those CO patients characterized by DE patients had a lower GMV in the left anterior cingulate and right amygdala, as well as lower levels of cognitive function, than the non-DE patients. CONCLUSIONS: Patients with CO intoxication in the chronic stage showed a worse cognitive and morphologic outcome, especially those with DE. This study provides additional evidence of gray matter structural abnormalities in the pathophysiology of DE in chronic CO intoxicated patients

    A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins
    corecore