59 research outputs found

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: a perspective from long‐term data assimilation

    Get PDF
    It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model-data fusion framework and systematically analyzed the SSA-induced biases using time-series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA-induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young-aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C-climate feedback

    A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium

    Full text link
    To investigate climate variability in Asia during the last millennium, the spatial and temporal evolution of summer (June–July–August; JJA) temperature in eastern and south-central Asia is reconstructed using multi-proxy records and the regularized expectation maximization (RegEM) algorithm with truncated total least squares (TTLS), under a point-by-point regression (PPR) framework. The temperature index reconstructions show that the late 20th century was the warmest period in Asia over the past millennium. The temperature field reconstructions illustrate that temperatures in central, eastern, and southern China during the 11th and 13th centuries, and in western Asia during the 12th century, were significantly higher than those in other regions, and comparable to levels in the 20th century. Except for the most recent warming, all identified warm events showed distinct regional expressions and none were uniform over the entire reconstruction area. The main finding of the study is that spatial temperature patterns have, on centennial time-scales, varied greatly over the last millennium. Moreover, seven climate model simulations, from the Coupled Model Intercomparison Project Phase 5 (CMIP5), over the same region of Asia, are all consistent with the temperature index reconstruction at the 99 % confidence level. Only spatial temperature patterns extracted as the first empirical orthogonal function (EOF) from the GISS-E2-R and MPI-ESM-P model simulations are significant and consistent with the temperature field reconstruction over the past millennium in Asia at the 90 % confidence level. This indicates that both the reconstruction and the simulations depict the temporal climate variability well over the past millennium. However, the spatial simulation or reconstruction capability of climate variability over the past millennium could be still limited. For reconstruction, some grid points do not pass validation tests and reveal the need for more proxies with high temporal resolution, accurate dating, and sensitive temperature signals, especially in central Asia and before AD 1400

    Adaptive weighted multi-view subspace clustering method for recognizing urban functions from multi-source social sensing data

    No full text
    Multi-source social sensing data provide new opportunities to identify urban functions from the perspective of human activity. The information embedded in multi-source data typically needs to be fused to obtain a comprehensive view of urban functions. Although multi-view clustering has been successfully used to fuse multi-source social sensing data, the adaptive determination of fusion weights for high-dimensional and noisy multi-source social sensing data remains challenging. Therefore, this study proposes an adaptive weighted multi-view subspace clustering (AWMSC) method. First, we use two neural networks to map multi-source data into a common latent representation and multiple specific latent representations, which serve as the query vector and input vectors of the attention mechanism, respectively. Then, the weight of each type of data is calculated based on the attention mechanism. Finally, the specific latent representations of the multi-source data are weighted and fused into a shared subspace representation, which is used as the input of the spectral clustering algorithm to obtain clustering results. AWMSC is applied to identify urban functional zones in Beijing using bus transactions, taxi trajectories, and points of interest datasets. The results show that AWMSC outperforms the typical single-view, weighted-average, and representative multi-view methods. AWMSC can obtain a comprehensive understanding of urban functional zones which may help government departments make more accurate strategic decisions

    Highly flexible, light-weight and mechanically enhanced (Mo2C/PyC)f fabrics for efficient electromagnetic interference shielding

    No full text
    Highly flexible, light-weight, and mechanically enhanced Mo2C modified PyC fiber (Mo2C/PyC) f fabrics with excellent electromagnetic interference shielding effectiveness (EMI SE) and enhanced mechanical strength were prepared via precursor infiltration and pyrolysis (PIP) method. The introduction of Mo2C significantly improved the EMI SE and tensile strength of the resultant fabrics compared to the control test sample (PyCf fabrics) prepared under identical conditions. At the thickness of 0.5mm, the EMI SE of the resultant (Mo2C/PyC)(f) fabrics can reach 40.7 dB compared with 14.0 dB of PyCf fabrics while the tensile strength increased to 5.63 +/- 0.16 MPa compared to 0.73 +/- 0.10 MPa of pristine PyCf fabrics. When the thickness of the resultant sample increased to 1.5 mm, the EMI SE in the X band was analyzed up to 60.0 dB with a mean value of 51.2 dB

    Tree-ring delta O-18 inferred spring drought variability over the past 200 years in the Hengduan Mountains, Southwest China

    No full text
    In this study, we developed a tree-ring delta O-18 chronology of Abies delavayi from Diancangshan (25 degrees 41'N, 100 degrees 06'E), in the Hengduan Mountains of Southwest China, spanning 205 years (1810-2014 CE). Tree-ring delta O-18 from Abies delavayi showed the highest negative correlation with relative humidity in the spring (r = -0.59, P < 0.05). Therefore, we used our delta O-18 chronology to reconstruct spring relative humidity during the period 1810-2014, which accounted for 35.1% of the variance of actual relative humidity for the calibration period 1979-2014. The reconstruction revealed two significantly dry periods during 1815-1835 and 1923-1940 CE, and a continuous shift towards drier conditions during the past 30 years. The long-term variability of spring relative humidity was consistent with previous results from Northwest Yunnan and regions nearby. We further suggest that the spring relative humidity variability in our study region might be linked to the El Nino-Southern Oscillation (ENSO), which is stimulated by the variation of sea surface temperatures in the central and east Pacific Ocean

    Dinaphthobenzo[1,2:4,5]dicyclobutadiene: Antiaromatic and Orthogonally Tunable Electronics and Packing

    No full text
    Polycyclic conjugated hydrocarbons containing antiaromatic four-membered cyclobutadienoids (CDB) are of great fundamental and technical interest. However, their challenging synthesis has hampered the exploration and understanding of such systems. Reported herein is a modular and efficient synthesis of novel CBD-containing acene analogues, dinaphthobenzo[1,2:4,5]dicyclobutadiene (DNBDCs), with orthogonally tunable electronic properties and molecular packing. The design also features strong antiaromaticity of the CBD units, as revealed by nucleus-independent chemical shift and anisotropy of the induced current density calculations, as well as X-ray crystallography. Tuning the size of silyl substituents resulted in the most favorable brick-layer packing for triisobutylsilyl-DNBDC and a charge mobility of up to 0.52cm(2)V(-1)s(-1) in field-effect transistors

    Multi-proxy temperature reconstruction from the West Qinling Mountains, China for the past 500 years.

    Get PDF
    A total of 290 tree-ring samples, collected from six sites in the West Qinling Mountains of China, were used to develop six new standard tree-ring chronologies. In addition, 73 proxy records were assembled in collaboration with Chinese and international scholars, from 27 publically available proxy records and 40 tree-ring chronologies that are not available in public datasets. These records were used to reconstruct annual mean temperature variability in the West Qinling Mountains over the past 500 years (AD 1500-1995), using a modified point-by-point regression (hybrid PPR) method. The results demonstrate that the hybrid PPR method successfully integrates the temperature signals from different types of proxies, and that the method preserves a high degree of low-frequency variability. The reconstruction shows greater temperature variability in the West Qinling Mountains than has been found in previous studies. Our temperature reconstruction for this region shows: 1) five distinct cold periods, at approximately AD 1520-1535, AD 1560-1575, AD 1610-1620, AD 1850-1875 and AD 1965-1985, and four warm periods, at approximately AD 1645-1660, AD 1705-1725, AD 1785-1795 and AD 1920-1945; 2) that in this region, the 20(th) century was not the warmest period of the past 500 years; and 3) that a dominant and persistent oscillation of ca. 64 years is significantly identified in the 1640-1790 period
    corecore