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Key Points: 30 

 The carbon turnover time in soil (τsoil) has a higher climate sensitivity to temperature and 31 

precipitation than that of biomass (τveg) 32 

 The strong climate responses of woody allocation and soil decomposition in combination 33 

contribute to the higher climate sensitivity of τsoil than τveg 34 

 The higher climate sensitivity of τsoil than τveg led to a decreased soil carbon sequestration 35 

capacity under warm and humid conditions  36 A
cc

ep
te

d
 A

rt
ic

le
 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences between
this version and the Version of Record. Please cite this article as doi: 10.1029/2020JG005880.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2020JG005880
https://doi.org/10.1029/2020JG005880
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020JG005880&domain=pdf&date_stamp=2022-02-15


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

Abstract 37 

The high uncertainty associated with the response of terrestrial carbon (C) cycle to climate is 38 

dominated by ecosystem C turnover time (τeco). Although the relationship between τeco and climate 39 

has been extensively studied, significant knowledge gaps remain regarding the differential climate 40 

sensitivities of turnover time in major biomass (τveg) and soil (τsoil) pools, and their effects on 41 

vegetation and soil C sequestration under climate change are poorly understood. Here, we collected 42 

multiple time-series observations on soil and vegetation C from permanent plots in ten Chinese 43 

forests and used model-data fusion to retrieve key C cycle process parameters that regulate τsoil 44 

and τveg. Our analysis showed that 𝜏veg and 𝜏soil both decreased with increasing temperature and 45 

precipitation, and τsoil was more than twice as sensitive (1.27 yr/°C, 1.70 yr/100 mm) than τveg 46 

(0.53 yr/°C, 0.40 yr/100 mm). The higher climate sensitivity of τsoil caused a more rapid decrease 47 

in τsoil than in τveg with increasing temperature and precipitation, thereby significantly reducing the 48 

difference between τsoil and τveg (τdiff) under warm and humid conditions. τdiff, an indicator of the 49 

balance between the soil C input and exit rate, was strongly responsible for the variation (more 50 

than 50%) in soil C sequestration. Therefore, a smaller τdiff under warm and humid conditions 51 

suggests a relatively lower contribution from soil C sequestration. This information has strong 52 

implications for understanding forest C-climate feedback, predicting forest C sink distributions in 53 

soil and vegetation under climate change, and implementing C mitigation policies in forest 54 

plantations or soil conservation. 55 

Plain Language Summary 56 

Carbon turnover time is the average time that a carbon atom stays in an ecosystem from entrance 57 

to exit. Together, ecosystem carbon input via photosynthesis (i.e., productivity) and carbon 58 

turnover time determine ecosystem carbon sequestration. However, in contrast to the well-studied 59 

ecosystem productivity, carbon turnover time was found to dominate the uncertainty in terrestrial 60 

carbon sequestration and its response to climate. However, the climate sensitivities of carbon 61 

turnover times in various plant and soil pools and their effects on carbon storage have not been 62 

well studied. Here, we quantified that carbon turnover time in soil (τsoil) was more sensitive to 63 

climate than that of vegetation (τveg). This finding indicated the difference between τveg and τsoil 64 

(τdiff) being shortened in warm and humid regions. We further found that τdiff, as an indicator of 65 

the balance between soil carbon input and the carbon exit rate, is closely associated with the 66 

capacity for soil carbon sequestration. Therefore, a decreasing τdiff with increasing 67 

temperature/precipitation indicates a smaller proportion of carbon sequestered by soil than 68 

vegetation. Our findings facilitate understanding of carbon-climate feedback and the prediction of 69 

carbon sink distributions under climate change and could guide the implementation of carbon 70 

mitigation policies for vegetation/soil conservation. 71 

1 Introduction 72 

The ways in which terrestrial carbon (C) storage responds to climate arguably represents 73 

the greatest uncertainty in predicting the future global C sink (Friedlingstein et al 2014). Gross 74 

primary productivity (GPP, C influx to enter the ecosystem) and C turnover time (time taken for 75 

C to exit the ecosystem) are two key determinants of terrestrial C sequestration (Luo et al 2017). 76 

However, relative to the well-studied and strongly converged modeling of GPP, the ecosystem C 77 

turnover time has been found to dominate the uncertainty in the response of terrestrial C 78 

sequestration to future climate change (Todd-Brown et al 2013; Friend et al 2014; He et al 2016; 79 

Luo et al 2017). Therefore, it is important to quantify terrestrial C turnover time and climate 80 
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sensitivity accurately to understand the climate-C cycle feedbacks and reduce the predictive 81 

uncertainty. 82 

Terrestrial C turnover is determined by both biotic and abiotic factors (Luo et al 2003). 83 

Numerous studies have suggested that the terrestrial C turnover time is closely linked to climate 84 

factors, such as temperature and precipitation (Carvalhais et al 2014; Chen et al 2013; Knorr et al 85 

2005). For example, Carvalhais et al. (2014) found a negative correlation between temperature 86 

and ecosystem C turnover time (τeco) across most regions worldwide. However, the τeco emerges 87 

from multiple ecosystem C compartments that vary greatly in their individual turnover times 88 

(Malhi et al 2009; Bloom et al 2016); leaf, root, and wood turnover and plant mortality in live 89 

biomass, as well as litter and soil C decomposition in dead organic C pools, are all key processes 90 

that collectively regulate the τeco and its covariation with climate (Trumbore 2000; Sitch et al 2003; 91 

Trumbore 2006). Previous studies have primarily been focused on the τeco or soil turnover time 92 

(τsoil) (Heckman et al 2014; Koven et al 2015; Schimel et al 1994) because soil is usually the 93 

largest C pool in terrestrial ecosystems and has a longer turnover time than vegetation (Schmidt et 94 

al 2011). The 6-fold underestimation of the τsoil in land surface models (LSMs) directly led to the 95 

soil C sequestration potential being overestimated by a factor of nearly two (He et al 2016). By 96 

contrast, the vegetation C turnover time (τveg) has been examined less frequently, although it is a 97 

crucial process in regulating C cycling (Erb et al 2016) and an essential parameter in C cycle 98 

models to predict the biomass allocation and productivity of an ecosystem (Fox et al 2009; Xia et 99 

al 2015; Thurner et al 2017; Xue et al 2017). 100 

Recently, several studies have separated the τeco into the 𝜏soil and 𝜏veg to analyze their spatial 101 

patterns, correlations with climate, and effects on C sequestration (Koven et al 2015; Bloom et al 102 

2016; Yan et al 2017; Wang et al 2018; Wu et al 2018). For example, Bloom et al. (2016) retrieved 103 

the global terrestrial C turnover times via model-data fusion (MDF) analysis and suggested a 104 

contrasting spatial feature between the 𝜏soil and 𝜏veg. Wang et al. (2018) combined an analysis of 105 

the vegetation biomass, soil organic C stock, and flux observations to reveal that the 𝜏soil and 𝜏veg 106 

have different climatic and biotic controlling factors. Koven et al. (2015) analyzed Coupled Model 107 

Intercomparison Project Phase 5 (CMIP5) simulations and determined which changes in 108 

vegetation/soil pools were controlled more by productivity or 𝜏veg/𝜏soil-driven changes. However, 109 

few studies have quantified the climate sensitivity of turnover times, which is directly associated 110 

with the responses of ecosystem C sinks to climate change (Friend et al 2014). Wu et al. (2018) 111 

modeled the climate sensitivities of both biomass and soil C turnover times separately, but 112 

observational datasets were used only for evaluating the model performance and not for comparing 113 

climate sensitivities between turnover times of biomass and soil C pools. Therefore, despite the 114 

expectation that the τveg (vegetation C exit rate) and τsoil (soil C exit rate) should have different 115 

physiological processes and climate responses (Bradford et al 2016; De Kauwe et al 2014), we 116 

still know little about how they differ in their sensitivities to climate and how these differences 117 

affect ecosystem C sequestration. As the temperature sensitivity of vegetation/soil C exit processes 118 

(e.g., for respiration (Q10)) has become a hotly debated topic in its variability and heterogeneous 119 

(Zhou et al 2009; Mahecha et al 2010; Conant et al 2011; Meyer et al 2018), a deeper 120 

understanding of the climate sensitivities of τveg and τsoil and their potential mechanisms is 121 

imperative to accurately predict C sinks and their feedbacks to climate. 122 

In this study, we examined the difference in climate sensitivity between the τveg and τsoil, 123 

the underlying mechanism, and the effect of this difference on ecosystem C sequestration. We 124 

hypothesized that τveg has a lower climate sensitivity than τsoil. The rationale for this hypothesis is 125 
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that τveg is more dependent on the combined effects of the vegetation type and land use compared 126 

to soil and climate factors and is dominated by vegetation age ((Erb et al 2016; Wang et al 2018, 127 

2019). To test this hypothesis, long-term dynamic observational data of soil, vegetation, and 128 

climate were collected from ten forest sites in eastern China. These forests represent a large, 129 

globally important C sink (362 ± 39 g C m−2 yr−1, mean ± 1 SE) that is affected by the eastern Asia 130 

monsoon and is characterized by high nitrogen deposition and a young age structure (Yu et al 131 

2014); most typical forest types in the Northern Hemisphere (e.g., cold-temperate coniferous 132 

forest, temperate coniferous and broad-leaved mixed forest, warm-temperate deciduous broad-133 

leaved forest, subtropical evergreen broad-leaved forest, and tropical monsoon rainforest) can be 134 

found here (Fu et al 2010). Although we collected multitype observations, these observations only 135 

cover partial information related to the soil or vegetation C dynamics in the ecosystem and 136 

therefore cannot be used to estimate τveg and τsoil directly. The MDF method is an effective 137 

approach to retrieving and optimizing key C-cycle states and process parameters that cannot be 138 

obtained solely from observations while still being necessary for turnover time estimation; 139 

moreover, the MDF can quantify the realistic dynamic disequilibrium state of the terrestrial C 140 

turnover times, because it assimilates multiple sources of time-series information from field 141 

observations into process-based models (Zhou et al 2013; Bloom et al 2016). Thus far, MDF has 142 

been widely applied to turnover time estimations across global scales (Luo et al 2003; Zhang et al 143 

2010; Zhou et al 2012; Ge et al 2019). Here, the observed dynamic data were integrated with an 144 

intermediate complexity C cycle model (Data Assimilation Linked Ecosystem Carbon, DALEC; 145 

Williams et al 2005; Bloom and Williams, 2015) based on MDF. Then, we retrieved the key 146 

parameters related to C allocation and turnover processes that regulate vegetation and the soil C 147 

cycle at a dynamic disequilibrium state. These parameters help to explain the different climate 148 

sensitivities between 𝜏soil and 𝜏veg in a transparent way. The difference in climate sensitivities of 149 

τveg and τsoil can be expected to cause a difference between the τveg and τsoil (τdiff) under climate 150 

change. We then quantified how τdiff, as an indicator of the balance between the vegetation C exit 151 

rate (equal to the soil C input rate) and the soil C exit rate, acts on soil C sequestration. The 152 

objectives of this study were to 1) quantify the magnitudes of τveg and τsoil and their spatial patterns; 153 

2) investigate the differences in the responses of τveg and τsoil to climate, test the hypothesis, and 154 

explore the underlying mechanisms based on the optimized process parameters; and 3) reveal the 155 

effects of differences in the climate sensitivities of τveg and τsoil on τdiff and ecosystem C 156 

sequestration. 157 

2 Materials and Methods 158 

2.1 Site description 159 

Ten sites in the Chinese Ecosystem Research Network (CERN) with long-term observation 160 

data were selected that encompass typical forest types in China, including tropical rainforest, 161 

subtropical evergreen coniferous and broad-leaved mixed forest, warm temperate deciduous 162 

broad-leaved forest and temperate coniferous and broad-leaved forest (Fig. 1). The sites span 163 

precipitation and temperature gradients from south to north. Across the ten sites, the latitude 164 

ranged from 22 to 42 °N, the forest age ranged from 30 to 400 years old, the mean annual 165 

temperature ranged from 3.6 to 22.6 °C, and the mean annual precipitation ranged from 427 to 166 

1669 mm. Of the different regions, the Xishuangbanna tropical seasonal rainforest (BNF), Dinghu 167 

Mountain subtropical evergreen coniferous and broad-leaved mixed forest (DHF), Ailao Mountain 168 

subtropical evergreen broad-leaved forest (ALF), and Changbai Mountain temperate deciduous 169 
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coniferous and broad-leaved mixed forest (CBF) are mature natural forests; Shennongjia 170 

subtropical evergreen deciduous broad-leaved mixed forest (SNF) and Huitong subtropical 171 

evergreen broad-leaved forest (HTF) are natural secondary forests; and other sites, i.e., Beijing 172 

warm temperate deciduous broad-leaved mixed forest (BJF), Maoxian warm temperate deciduous 173 

coniferous mixed forest (MXF), Qianyanzhou subtropical evergreen artificial coniferous mixed 174 

forest (QYF), and Heshan subtropical evergreen broad-leaved forest (HSF), are plantations of 175 

middle-aged and young forests. All the sites are well protected, with little deforestation and other 176 

disturbances from human activities. Details regarding the vegetation, soil, climate, and geographic 177 

characteristics of each permanent plot can be found in Table S1. 178 

 179 
Figure 1. Map showing the distribution of 10 forest ecosystems in the Chinese Ecosystem Research 180 

Network (CERN). BNF: Xishuangbanna tropical seasonal rainforest, HSF: Heshan subtropical 181 

evergreen broad-leaved forest, DHF: Dinghu Mountain subtropical evergreen coniferous and 182 

broad-leaved mixed forest, ALF: Ailao subtropical evergreen broad-leaved forest, QYF: 183 

Qianyanzhou subtropical evergreen artificial coniferous mixed forest, HTF: Huitong subtropical 184 

evergreen broad-leaved forest, SNF: Shennongjia subtropical evergreen deciduous broad-leaved 185 

mixed forest, MXF: Maoxian warm temperate deciduous coniferous mixed forest, BJF: Beijing 186 

warm temperate deciduous broad-leaved mixed forest, CBF: Changbai Mountain temperate 187 

deciduous coniferous and broad-leaved mixed forest. 188 

2.2 Data 189 

We applied daily observations of some meteorological parameters (i.e., daily max air 190 

temperature (Tmax), daily min air temperature (Tmin), daily average air temperature (T), global 191 

radiation (Rg), photosynthetically active radiation (PAR), precipitation (PRCP), and vapor 192 

pressure deficit (VPD)) and constant soil parameters (soil textural information indicating the soil, 193 

sand and clay percentages) to drive the model of the ten sites from 2005 to 2015. Furthermore, the 194 

C state and process variables were constrained by eight datasets from at each site, including three 195 
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biomass datasets (biomasses of foliage, fine roots and wood) and a soil organic C (SOC) dataset 196 

of observations performed at least once every 5 years from 2005-2015, a canopy dynamic dataset 197 

(of seasonal leaf area index (LAI) measured at least quarterly every year), an annual litterfall 198 

dataset, and two flux datasets (on the daily net ecosystem exchange (NEE) and monthly soil 199 

respiration (Rs)). The meteorological drivers, biomass, SOC, and LAI constraint data were all 200 

obtained from the CERN scientific and technological resources service system 201 

(http://www.cnern.org.cn/). The flux-tower NEE data used in this study were obtained at 202 

ChinaFLUX (http://www.chinaflux.org/general/). The Rs data were measured using static 203 

chamber-gas chromatography techniques and provided by Zheng et al. (2010). Details on the 204 

observational period and numbers for each dataset can be found in Table S2. 205 

2.3 Multiple data-model fusion at the dynamic disequilibrium state 206 

In a realistic dynamic disequilibrium state, C pools vary dynamically over time (i.e., dC/dt 207 

≠ 0); thus, long-term and dynamic observations of C stocks and fluxes were used to constrain and 208 

parameterize the DALEC model at a non-steady state (Eq. 1) independently at each site. To test 209 

whether these parameters are overfitted, we also did a 5-fold cross-validation experiment; 210 

specifically, in each fold, 20% of observed data were removed randomly and unrepeatably to 211 

implement assimilation during each site, in contrast to all-data assimilation. Regarding the initial 212 

states of the C pools, usually they are determined by a spin-up run of the model, which iterating 213 

hundred to thousand years to achieve the steady state to initialize the C pools. However, to avoid 214 

the uncertainty arising from the steady state assumption in spin-up process (Carvalhais et al 2008, 215 

2010; Exbrayat et al 2014), here the initial states of the C pools were determined by the first 216 

available observation of C stocks or optimized (i.e., the labile pool, which cannot be directly 217 

observed). Then, the optimized parameter sets were used in forward modeling driven by the 218 

dynamic environmental variables to estimate the turnover times and C sequestration in soil, 219 

vegetation, and the whole ecosystem. 220 

{

𝑑𝐶

𝑑𝑡
≠ 0                                                                        

𝐶𝑖(t + 1) = 𝐶𝑖(t) + 𝐼𝑖(t)– 𝑘𝑖𝐶𝑖(t), i = 1,2 … n 

𝐶𝑖(t = 0) =  𝐶𝑖0                                                       

                (1) 221 

where Ci, Ii, and ki represent the size, input and turnover rate of the ith C reservoir, respectively, 222 

and Ci0 represents the initial state of the ith C reservoir. 223 

Specifically, we used the latest version of DALEC (Smallman et al 2017; Famiglietti et al 224 

2021), which is an intermediate-complexity model that has been improved in terms of its number 225 

of dead C pools and process representations related to photosynthesis, decomposition regulated by 226 

both temperature and soil moisture, and water cycle feedbacks (Fig. S1). The C cycle was initiated 227 

with the canopy C influx: gross primary productivity (GPP), which was predicted using the 228 

aggregated canopy model (ACM-GPP-ET) (Smallman and Williams, 2019). There is a strong 229 

coupling between C cycle and water cycle processes, and it is mediated directly by stomatal 230 

conductance and indirectly by the root zone soil moisture content and its accessibility. ACM-GPP-231 

ET is a simple aggregated set of equations operating on the LAI (determined directly from foliage 232 

pool), total daily irradiance, minimum and maximum daily temperature, day length, water potential 233 

gradient, and total soil-plant hydraulic resistance. After GPP is consumed in a specific fraction 234 

(𝑓𝑎𝑢𝑡𝑜) by autotrophic respiration (Ra), the remaining photosynthate (NPP) is allocated to plant 235 

tissue pools (foliar, labile, wood, and fine roots). The degraded C from these plant tissue pools 236 

http://www.cnern.org.cn/
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then goes to two dead organic matter pools (litter and soil) with heterotrophic respiration (Rh) 237 

losses. The C exiting from all the C reservoirs was based on a first-order differential equation with 238 

various turnover rates, with temperature and moisture dependency on the turnover from the litter 239 

and soil pools. 240 

In this version, the DALEC model includes a multilayer representation of the soil and root 241 

access (Smallman and Williams, 2019). There are five soil layers, three of which are accessible to 242 

roots to supply the canopy with water. The top two layers have a fixed thickness of 10 and 20 cm, 243 

with a third layer that is expandable based on root penetration. The soil layer-specific field 244 

capacity, porosity, and hydraulic conductances are calculated using the soil texture. Using these 245 

data, infiltration by precipitation, drainage between soil layers, soil hydraulic resistance to root 246 

uptake of water, and soil surface evaporation are estimated. Therefore, we added a decomposition 247 

response that was linked to the soil moisture content of the topsoil layer. In contrast to the original 248 

DALEC version that considered only the temperature dependency, here, we added a moisture 249 

scalar to the litter and soil decomposition process since the Rh process is both temperature- and 250 

soil moisture-sensitive. The detailed exponential response equation from Sierra et al. (2015) is as 251 

follows, which improved the model structure to quantify the climatic sensitivity of turnover times 252 

to both temperature and moisture factors equally. The Rh includes a fine litter pool (Rh−lit composed 253 

of foliar and fine root inputs), wood litter (Rh−woodlit composed of both fine and coarse woody 254 

debris), and soil organic matter (Rh−som). Decomposition and mineralization follow a first-order 255 

kinetic approach with environmental modifiers. When litter and wood litter pools turn over, a 256 

fraction of their C is released as heterotrophically respired C, while the remainder passes to the 257 

soil organic matter pool (Dlit, Dlitwood; gC m−2 d−1). All decompositions of soil organic matter are 258 

heterotrophically respired as CO2. Rh follows first-order kinetics with exponential temperature 259 

sensitivity and exponential soil moisture sensitivity. 260 

𝑅ℎ_𝑙𝑖𝑡 = 𝐶𝑙𝑖𝑡 × 𝜃𝑙𝑖𝑡 × 𝑓𝑇 × 𝑓𝑤                                             (2) 261 

𝑅ℎ_𝑠𝑜𝑚 = 𝐶𝑠𝑜𝑚 × 𝜃𝑠𝑜𝑚 × 𝑓𝑇 × 𝑓𝑤                                      (3) 262 

𝑅ℎ_𝑤𝑜𝑜𝑑𝑙𝑖𝑡 = 𝐶𝑤𝑜𝑜𝑑𝑙𝑖𝑡 × 𝜃𝑤𝑜𝑜𝑑𝑙𝑖𝑡 × 𝑓𝑇 × 𝑓𝑤                       (4) 263 

𝑓𝑇 = 0.5𝑒𝑅ℎ𝑡𝑒𝑚𝑝×𝑇                                                              (5) 264 

𝑓𝑊 = 𝑒−𝑒(𝑎−𝑏×𝑆𝑊𝐶)
                                                              (6) 265 

where, 𝑅ℎ_𝑙𝑖𝑡, 𝑅ℎ_𝑆𝑂𝑀 and 𝑅ℎ_𝑤𝑜𝑜𝑑𝑙𝑖𝑡 refer to the heterotrophic respiration from foliar and fine root 266 

litter (𝐶𝑙𝑖𝑡), soil organic matter pools (𝐶𝑠𝑜𝑚), and both fine and coarse woody debris (𝐶𝑤𝑜𝑜𝑑𝑙𝑖𝑡), 267 

respectively; 𝜃𝑙𝑖𝑡 , 𝜃𝑠𝑜𝑚  and 𝜃𝑤𝑜𝑜𝑑𝑙𝑖𝑡  refer to the baseline turnover rates of the 𝐶𝑙𝑖𝑡 , 𝐶𝑠𝑜𝑚  and 268 

𝐶𝑤𝑜𝑜𝑑𝑙𝑖𝑡 pools; 𝑓𝑇 and 𝑓𝑤 refer to the temperature and moisture scalars to adjust the real turnover 269 

rate, respectively; 𝑇  is the daily air temperature; 𝑅ℎ𝑡𝑒𝑚𝑝  is the heterotrophic respiration 270 

exponential temperature dependence; 𝑆𝑊𝐶 is the daily soil water content at 0-10 cm; and 𝑎, 𝑏 are 271 

adjustment constants. 272 

The C pools and fluxes in the DALEC were iteratively calculated at a daily time step and 273 

determined as a function of the key turnover and allocation parameters (Table S3). The Metropolis 274 

simulated annealing algorithm, a variation of the Markov chain Monte Carlo (MCMC) technique, 275 

was applied to optimize the model parameters (Hurtt and Armstrong, 1996; Metropolis et al 1953). 276 

Moreover, we imposed a sequence of ecological and dynamic constraints (EDCs) on the model 277 

parameters and pool dynamics to improve the MDF performance further (Bloom and Williams, 278 
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2015; Bloom et al 2016; Smallman et al 2017), which can significantly reduce uncertainty (34%) 279 

in model parameters and simulations. A detailed description of the dynamic disequilibrium method 280 

can be found in our previous study (Ge et al 2019). 281 

2.4 Estimation of turnover time, climate sensitivity and C sequestration 282 

At a realistic dynamic disequilibrium state, τ was defined as the ratio between the mass of 283 

a C pool and its outgoing fluxes (Schwartz 1979). Note that because there were few natural and 284 

anthropogenic disturbances at these well-protected CERN sites (Zhou et al 2006; Zhang et al 285 

2010), the C efflux was approximately equivalent to the heterotrophic respiration (Rh) for the soil 286 

pool and the sum of autotrophic respiration (Ra) and litterfall (plant mortality) for the vegetation 287 

pool. Hence, the turnover times for vegetation, soil, and the whole ecosystem were derived as 288 

follows: 289 

𝜏𝑣𝑒𝑔 =
𝐶𝑙𝑖𝑣𝑒

𝐼𝑙𝑖𝑣𝑒−∆𝐶𝑙𝑖𝑣𝑒
=

𝐶𝑙𝑖𝑣𝑒

𝑙𝑖𝑡𝑡𝑒𝑟𝑓𝑎𝑙𝑙+𝑅𝑎
                             (7) 290 

𝜏𝑠𝑜𝑖𝑙 =
𝐶𝑑𝑒𝑎𝑑

𝐼𝑑𝑒𝑎𝑑−∆𝐶𝑑𝑒𝑎𝑑
=

𝐶𝑑𝑒𝑎𝑑

𝑅ℎ
                                     (8) 291 

𝜏𝑒𝑐𝑜 =
𝐶𝑒𝑐𝑜

𝐼𝑒𝑐𝑜−∆𝐶𝑒𝑐𝑜
=

𝐶𝑑𝑒𝑎𝑑+𝐶𝑙𝑖𝑣𝑒

𝑅ℎ+𝑅𝑎
                                  (9) 292 

where 𝐶live, 𝐶dead and 𝐶eco refer to the live biomass C pool size (Cf, Cr, and Cw), dead organic C 293 

pool size (Csoil and Clitter), and whole ecosystem C pool size, respectively; Ilive, Idead and Ieco refer 294 

to the C input into the live biomass C pool, dead organic C pool, and whole ecosystem C pool, 295 

respectively;  ∆𝐶live, ∆𝐶𝑑𝑒𝑎𝑑 and ∆𝐶eco refer to changes in the live biomass C pool, dead organic C 296 

pool, and whole ecosystem C pool, respectively; and 𝑅𝑎  and 𝑅ℎ  refer to the autotrophic and 297 

heterotrophic respiration, respectively, which were all calculated from the DALEC output driven 298 

by the optimized parameters and dynamic meteorological drivers. The C reservoirs, fluxes, and 299 

turnover times are instantaneous values. Here, we used the yearly turnover times from 2005 to 300 

2015 and the mean annual value at each site to determine their climate sensitivity under climate 301 

change and various climatic conditions. 302 

We estimated the responses of the 𝜏𝑣𝑒𝑔 and 𝜏𝑠𝑜𝑖𝑙 to climate variables using a simple linear 303 

regression approach: 304 

   𝜏 = 𝑎𝑋𝑇 + 𝑇                                                            (10) 305 

   𝜏 = 𝑏𝑋𝑃𝑅𝐶𝑃 + 𝑃𝑅𝐶𝑃                                                  (11) 306 

where 𝜏 is the estimated turnover time for vegetation or soil, and XT and XPRCP are the mean annual 307 

temperature and precipitation, respectively. The regression coefficients a and b represent the 308 

sensitivities of the C turnover times to two climate variables across the ten sites, and 𝑇 and 𝑃𝑅𝐶𝑃 309 

are the corresponding residual errors. 310 

The optimized parameter values and the initial observations of the corresponding C pool 311 

sizes were used in forward modeling driven by the dynamic environmental variables from 2005 to 312 

2015 (Zhou and Luo 2008). The net ecosystem productivity (NEP) was further derived from the 313 

difference between the modeled ecosystem C influx GPP and C outgoing fluxes (Ra+ Rh). To 314 

further analyze the effect of difference in the climate sensitivities of τveg and τsoil on forest 315 

ecosystem C sequestration, we then split the NEP into C sinks sequestered in dead organic C pools, 316 

which were calculated as the C stock changes in the soil and litter pools (∆𝐶𝑑𝑒𝑎𝑑). 317 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

2.5 Comparison with assimilated benchmark and LSM simulations 318 

We chose the globally estimated turnover times by using the CARbon DAta MOdel 319 

framework (CARDAMOM) (Bloom et al 2016) as an assimilated benchmark and TRENDY v6 320 

(Sitch et al 2015; Le Quéré et al 2018) as simulations from most state-of-the-art LSMs. All 321 

regional pixels of the two products in the Northern Hemisphere were calculated to compare with 322 

our MDF results from the typical forest sites across the Northern Hemisphere. Specifically, 323 

CARADAMOM was driven by monthly time steps from European Centre for Medium-Range 324 

Weather Forecasts (ECMWF) Reanalysis Interim (ERA-interim) meteorology datasets and the 325 

MODIS burned area product at a 1° × 1° resolution for the 2005–2015 period. The global 326 

observational constraints consisted of MODIS LAI, vegetation biomass (Carvalhais et al 2014), 327 

and the Harmonized World Soil Database (HWSD) SOC stocks, which were all assimilated into 328 

DALEC in this framework to retrieve the 𝜏𝑣𝑒𝑔 and 𝜏𝑠𝑜𝑖𝑙. 329 

The LSM 𝜏 estimations were generated from simulated vegetation, soil C stocks and fluxes 330 

by a set of 13 LSMs (i.e., OCN, CABLE, CLASS, CLM, DLEM, ISAM, LPJ-WSL, LPJ-GUESS, 331 

LPX, ORCHIDEE, ORCHIDEE-MICT, VEGAS, and VISIT; Table S4) from the recent TRENDY 332 

v6 intercomparison project in which models are forced with changing climate, CO2, and LULCC 333 

(S3 experiments) for the 2005-2015 period. Specifically, for 𝜏veg, since the vegetation efflux was 334 

not processed as an output in TRENDY (e.g., litterfall), we estimated the 𝜏veg using dCveg/dt = 335 

GPP - Cveg/𝜏𝑣𝑒𝑔, which was used to indirectly calculate the difference between annual vegetation 336 

C stock variation and GPP as vegetation efflux, while we directly calculated the 𝜏soil using the and 337 

soil efflux Rh = Csoil/ 𝜏soil. 338 

3 Results 339 

3.1 Performance of model simulations 340 

The modeled biometric and soil variables were consistent with the observational data for 341 

the corresponding eight variables, with the scatter points aligning with the 1:1 line (Fig. 2a-h). 342 

Specifically, the determination coefficients (R2) for the C stock-related variables varied from 0.94-343 

0.99, and the root-mean-square errors (RMSEs) were small relative to their magnitudes (Fig. 2a-344 

e). By contrast, the R2 values for the C fluxes (NEE, Rs and litterfall) were slightly lower 345 

(0.600.65, Fig. 2f-h), but the bias values were within 1 standard deviation of the observations. In 346 

addition, the optimized parameters were well constrained by multiple and long-term observations; 347 

the standard deviations of the retrieved parameters were typically < 35% of the mean parameter 348 

values (Fig. S2). The litter decomposition coefficient, 𝜃𝑚𝑖𝑛, was an exception, with a standard 349 

deviation of 85% of the mean parameter estimate (Fig. S2g). High uncertainty associated with 350 

belowground processes was not unexpected, because the only incorporated information on 351 

belowground processes was soil respiration and soil C storage. According to a 5-fold cross-352 

validation, the accuracy of the C flux and pool simulations were close to those in the all-data 353 

assimilation (Fig. S4), so the random lack of constraint data did not impact the assimilation, and 354 

these parameters were not overfitted. 355 
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 356 
Figure 2. Performance of model data fusion in C stock and flux estimations at all sites during the 357 

study period. For the scatterplots, the modeled values are plotted against observations to show 358 

the quality of the model fit. 359 

3.2 Estimated 𝜏soil and 𝜏veg and their climate sensitivities 360 

The mean annual 𝜏veg ranged from 3.8 to 19.3 years (mean 10.5 years), whereas the 𝜏soil 361 

ranged from 12.9 to 51.6 years (mean 29.8 years), and the 𝜏eco ranged from 8.8 to 35.9 years (mean 362 

22.2 years) at the ten sites (Fig. 3a). The 𝜏soil was more than twice that of the 𝜏veg in the 10 typical 363 

forest ecosystems, which was attributed primarily to the slower rate of C decomposition in the soil 364 

pools than that of the plant tissues (Figs. S2d-i). Moreover, the 𝜏soil dominated the magnitude and 365 

pattern of the 𝜏eco and explained more than 70% of the variance in the 𝜏eco (Fig. 3b). 366 
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 367 

Figure 3. (a) Magnitude of C turnover time in the vegetation (𝜏veg), soil (𝜏soil) and whole ecosystem 368 

(𝜏eco). The green, black, and white bars (mean value and 1 standard error (SE)) denote the 𝜏veg, 𝜏soil, 369 

and 𝜏eco, respectively. (b) There is a significant linear relationship between the 𝜏soil and 𝜏eco. 370 

Xishuangbanna tropical seasonal rainforest (BNF), Dinghu Mountain subtropical evergreen 371 

coniferous and broad-leaved mixed forest (DHF), Ailao Mountain subtropical evergreen broad-372 

leaved forest (ALF), and Changbai Mountain temperate deciduous coniferous and broad-leaved 373 

mixed forest (CBF) are mature natural forests; Shennongjia subtropical evergreen deciduous 374 

broad-leaved mixed forest (SNF) and Huitong subtropical evergreen broad-leaved forest (HTF) 375 

are natural secondary forests. Other sites, i.e., Beijing warm temperate deciduous broad-leaved 376 

mixed forest (BJF), Maoxian warm temperate deciduous coniferous mixed forest (MXF), 377 

Qianyanzhou subtropical evergreen artificial coniferous mixed forest (QYF), and Heshan 378 

subtropical evergreen broad-leaved forest (HSF), are plantations or middle-aged and young forests. 379 

 380 

The mean annual 𝜏veg and 𝜏soil across the ten sites exhibited similar patterns, both of which 381 

were negatively correlated with the mean annual temperature and precipitation (Figs. 3a, b). 382 

However, the sensitivity of the 𝜏veg to these two climatic variables was substantially lower than 383 

that of the 𝜏soil, which decreased from 1.27 yr/°C to 0.53 yr/°C (by 59%) for temperature and from 384 

1.70 yr/100 mm to 0.40 yr/100 mm (by 81%) for precipitation (Figs 3a, b). Similarly, the annual 385 

time-varying 𝜏veg and 𝜏soil at each site indicated that the 𝜏soil has a more significant and higher 386 

climate sensitivity to varying temperatures than the 𝜏veg (Figs. S7 and S10). 387 
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 388 

Figure 4. Associations of turnover times in vegetation (𝜏veg) and soil (𝜏soil) and their difference 389 

(𝜏diff) (mean value and 1 SE) with the mean annual temperature (a, c) and precipitation (b, d). The 390 

dashed and solid lines denote non-significant and significant regressions at the 0.05 level, 391 

respectively. 392 

3.3 Key C cycle process controls over the climate sensitivities of 𝜏soil and 𝜏veg 393 

3.3.1 Apparent C stocks and fluxes 394 

The C turnover time is defined as the ratio of the C pool to its outgoing flux; therefore, the 395 

covariation in 1) vegetation C stocks, litterfall and Ra, as well as 2) soil C stocks and Rh with 396 

temperature and precipitation, were analyzed. The vegetation C stocks increased markedly with 397 

increasing temperature; although the correlation with precipitation was not statistically significant, 398 

the regression line also showed an obvious positive trend. By contrast, there were no significant 399 

trends for the soil C stocks (Figs. 5a and 5b). Ra, Rh and litterfall both increased with increasing 400 

temperature and precipitation, although a statistically significant increase was observed only for 401 

the Rh and temperature. The Rh was more sensitive to climate variation than litterfall and Ra (Figs. 402 

5c and 5d). Overall, the fluxes had a higher variability than the C stocks and dominated the 403 

variation in C turnover time. Under rising temperatures, the significant increasing trend in the 404 

vegetation stocks and the nonsignificant increasing trend in litterfall and Ra formed two 405 

compensatory forces acting on the variation in the 𝜏veg (i.e., Cveg/(litterfall+Ra)), which resulted in 406 

a weaker slope of the 𝜏veg response to climate relative to that of 𝜏soil (Fig. 4a). The lack of climate 407 

sensitivity in soil stocks together with the significant increasing trend of the Rh led to the higher 408 

sensitivity (greater slope in Fig. 5a) of 𝜏soil (i.e., Csoil/Rh). The same pattern was supported by the 409 

available observations on soil and biomass C stocks and fluxes (i.e., litterfall and Rs), which 410 

verified the robustness of the simulated variation (Fig. S5). 411 
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 412 

   413 

Figure 5. Associations of C pools (vegetation-green; soil-black) and fluxes in vegetation (litterfall 414 

and Ra) and soil (Rh) (mean value and 1 SE) with temperature (a, c) and precipitation (b, d). The 415 

dashed and solid lines denote non-significant and significant regressions, respectively. The ALF 416 

appears to be an outfitter with large vegetation and soil C pools (both more than 24000 g C m-2) 417 

among these sites due to its cold and wet conditions at high elevations (2488 m); thus, this point 418 

was not incorporated into the linear regression in Figs. 5a and 5b. The figure incorporated the ALF 419 

point into the linear regression can be found in Fig. S6. 420 

3.3.2 Underlying parameters: allocation and turnover rates 421 

The C allocation and turnover among plant compartments as well as the decomposition of 422 

litter and soil are vital parameters that control C pools and fluxes and, thus, the τveg and τsoil. Among 423 

the vegetation pools, we focused on woody allocation and turnover since woody tissue is the 424 

dominant pool of biomass and has a much longer turnover time than leaves and fine roots 425 

(Galbraith et al 2013). Based on the regression of optimized parameters against climate data, we 426 

quantified the climate sensitivities of key parameters to explore why the 𝜏soil is more sensitive to 427 

climate than 𝜏veg (Fig. 6). Their covariation with temperature is described as an example here (Fig. 428 

6a). We found that the decomposition rate in soil (θsom) increased to a greater extent (2×10-6/ °C) 429 

than the wood mortality (θwoo, 1×10-6/ °C) with increasing temperature; this trend caused the Rh to 430 

increase more rapidly than litterfall (13.67 g C m-2 yr-1/ °C vs. 9.35 g C m-2 yr-1/ °C), resulting in 431 

a more rapid and significant decrease in 𝜏soil than in 𝜏veg (-1.27 yr/°C vs. -0.53 yr/°C), which 432 

ultimately dominated the decrease in 𝜏eco. Since the soil C input (litterfall) and C output (Rh) both 433 

increased with temperature and precipitation, Csoil did not exhibit a pronounced sensitivity to 434 

climate (15.82 g C m-2/ °C); thus, Csoil had a negligible influence on the pattern of the τsoil (i.e., 435 

Csoil/Rh), which was more affected by the Rh with high and significant climate sensitivity. 436 
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Moreover, θsom, rather than litter turnover (θlit), contributes more to the Rh variation and then 437 

dominates the climatic sensitivity of the whole dead organic C turnover time. Regarding the 438 

vegetation pools, the allocation to wood (fwoo) also increased with temperature and humidity. This 439 

rising fwoo significantly increased the Cveg pool (403.67 g C m-2/ °C), while the rising fauto and θwoo 440 

increased autotrophic respiration and litterfall. The rising fwoo exerted a damping effect on the 441 

decline in 𝜏veg with increasing temperature and precipitation due to increasing plant mortality (θwoo) 442 

and fauto. Therefore, the sensitivity of 𝜏veg to both temperature and precipitation was much lower 443 

than that of 𝜏soil. Compared to climatic factors, biotic factors, i.e., forest age, explained more of the 444 

variation in the 𝜏veg (61% in Fig. 7a; temperature: 50%, and precipitation: 8% in Figs. 4a and 4b). 445 

The dominant role of biotic factors (e.g., forest age) in controlling the 𝜏veg also contributed to the 446 

lower sensitivity of the 𝜏veg to climatic factors. 447 

 448 

 449 

Figure 6. Dependencies of key process parameters in live biomass and dead organic matter on 450 

temperature (a) and precipitation (b) across sites. The boxes/lines denote processes in vegetation 451 

(green) and soil (black), where the r and slope in the boxes denote the correlation coefficient and 452 

sensitivity of these processes to varying temperature/precipitation. The arrows denote the non-453 
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significant (dashed) and significant (solid) effects of one process on another. The values next to 454 

the arrows denote the correlation coefficients between connected processes; negative values reflect 455 

negative effects. 456 

 457 

Figure 7. Correlations of vegetation turnover time (𝜏veg, a) and the difference between 𝜏veg and 458 

soil turnover time (𝜏diff, b) (mean value and 1 SE) with forest age in the study sites across China. 459 

Power functions are fitted to the data, and their parameters and statistics are reported. 460 

3.4 Effects of climate sensitivities of 𝜏soil and 𝜏veg on 𝜏diff and ecosystem C sinks 461 

All ten forests were net C sinks, with mean annual NEP values ranging from 244 to 445 g 462 

C m-2 yr-1 (Fig. 8a) across sites. The ratio of C sinks in soil (∆𝐶𝑑𝑒𝑎𝑑) to that in the whole ecosystem 463 

(NEP) varied from 18-68% across the ten typical forests (Figs. 8a and 8b). Moreover, 55% of this 464 

variation was explained by the difference between 𝜏soil and 𝜏veg, i.e., 𝜏diff (Fig. 8b, linear regression). 465 

Since 𝜏veg reflects the C input rate into the soil pool and 𝜏soil reflects the C exit rate from the soil 466 

pool, the difference in these two traits (𝜏diff), as the balance of soil C input and exit rate, might 467 

largely explain the variation in the capacity for C sequestration in soil (Fig. 8b). We found that the 468 

pattern and variation of 𝜏diff were determined by the various climate sensitivities of 𝜏soil and 𝜏veg. 469 

The higher climate sensitivity of 𝜏soil than 𝜏veg led to more rapid decreases in 𝜏soil than 𝜏veg with 470 

increasing temperature and precipitation, thereby significantly decreasing the 𝜏diff under warm and 471 

humid conditions (Figs. 4c and 4d). Accordingly, the lower 𝜏diff resulted in a significant decrease 472 

in the ratio of C sequestered in soil in warmer areas (Fig. 8c). The detailed annually time-varying 473 

𝜏diff and its covariation with temperature, as well as its effect on the ∆𝐶𝑑𝑒𝑎𝑑 at each site, showed 474 

consistent patterns, further indicating that the decrease in 𝜏diff with climate warming led to a lower 475 

contribution of soil C sequestration (Figs. S7 and S8). 476 
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 478 

Figure 8. Magnitude (mean value and 1 SE) of C sinks fixed in soil (∆𝐶𝑑𝑒𝑎𝑑) and in the whole 479 

ecosystem (NEP) across the latitudinal gradient of the 10 sites (a). Covariation of the ratio (mean 480 

value and 1 SE) of C sinks fixed in soil to that fixed in the whole ecosystem (∆𝐶𝑑𝑒𝑎𝑑 / NEP) with 481 

the differences between the turnover times in soil and vegetation (𝜏diff) (b) and the mean annual 482 

temperature (c). 483 

4 Discussion 484 

4.1 Estimation of climate sensitivity in 𝜏veg/𝜏soil and its uncertainty 485 

Various methods have been used to estimate C turnover times, for example, using the ratio 486 

of observed stocks and fluxes (e.g., Carvalhais et al 2014; Yu et al 2019), using model simulations 487 

(e.g., Zhou et al 2013; Wu et al 2020a) or using MDF method (e.g., Zhang et al 2010; Zhou et al 488 

2012). Direct observations cannot provide all the variables and parameters involved in estimating 489 

both vegetation and soil C turnover times, which are primarily dependent on process model 490 

simulations (Koven et al 2015; Bloom et al 2016; Yan et al 2017). In contrast to the model 491 

simulation based on preset parameters, the applied MDF method facilitates the optimization of the 492 

model parameters and states according to the multiple and co-located observations on different 493 

soil and vegetation variables. It has long been a common practice in the ecological modeling 494 

community to calibrate parameters by fitting model outputs to observations via MDF, which has 495 

also been widely adopted and acknowledged in parameter inversion and C turnover time estimation 496 

for each specific site or each grid cell across large scales (Luo et al 2003; Zhang et al 2010; Zhou 497 

et al 2013; Bloom et al 2016; Ge et al 2019). The advanced assimilation method, the collected 498 

prior information for parameters, and expert experiential knowledge used as model constraints 499 

(EDCs) can be adopted in MDF to ensure the optimized parameters have physiologically 500 

meaningful ranges and values and to avoid parameter overfitting effectively (Bloom and Williams, 501 

2015; Smallman et al 2017). These parameters, which cannot be solely obtained from 502 

observations, help to explain the underlying mechanism of climate sensitivities in 𝜏soil and 𝜏veg and 503 

then the C-climate feedback in a more transparent way in contrast to the apparent C stocks and 504 

fluxes. Moreover, MDF provides an effective approach to quantifying the realistic dynamic 505 

disequilibrium of the terrestrial C cycle, because it can assimilate long-term, time-series and 506 

multiple observations into the process-based model (Bloom et al 2016). 507 

To improve the model predictive skill and reduce model uncertainty of turnover time 508 

estimation, improving model parameterization (via MDF) and increasing structural complexity 509 
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(like Earth System Models (ESMs)) are two main approaches. The DALEC is an C cycle process 510 

model suitable for MDF with intermediate complexity. We still expect model structure 511 

improvement by including hypothesized missing C pools (e.g., adding numbers of dead organic C 512 

pools) or improving representations on over-simplified processes (e.g., fixed Ra:GPP fraction), or 513 

introducing additional processes (e.g., C-nitrogen cycling or C-water cycling). By contrast, the 514 

ESMs have high structure complexity, which can benefit not only long-term predictions of global 515 

change, but also near-term, regional-scale ecological forecasts aimed to inform sustainable 516 

decision making (Dietze et al 2018; White et al 2019) and modeling studies focused on 517 

understanding the recent past (Schwalm et al 2020). However, the extent to which increased 518 

structural complexity can directly improve predictive skill is unclear (Famiglietti et al 2021). It is 519 

therefore possible that other approaches to reducing C cycle model uncertainty (e.g., improving 520 

model parameterization via MDF) may be more effective than increasing structural realism in 521 

some circumstances (noted by Shiklomanov et al 2020 and Wu et al 2020b). On one hand, several 522 

recent ESM efforts have sought to enable the assimilation of eddy covariance or remote sensing 523 

observations on C pools (e.g., Peylin et al 2016; Norton et al 2019) as well as measurements of 524 

functional traits (e.g., LeBauer et al 2013). The value of such efforts to reduce parameter 525 

uncertainty were underscored. On the other hand, the MDF models like DALEC with optimized 526 

parameters has comparable performance to state-of-art terrestrial biosphere model estimates in 527 

Trendy and CMIP5 (Quetin et al 2020); recently, similar MDF-based model simulations were 528 

adopted as novel benchmark in the International Land Model Benchmarking (ILAMB) project on 529 

C cycle to evaluate and improve ESM performance (Slevin et al 2016; López-Blanco et al 2019). 530 

Numerous studies have investigated the relationship between ecosystem turnover times and 531 

climate (e.g., Bloom et al 2016; Carvalhais et al 2014; Chen et al 2013; Knorr et al 2005; Wang 532 

et al 2018; Yan et al 2017), but few studies have quantified the different climatic sensitivities in 533 

the live and dead organic matter pools (e.g., Wu et al 2018). Here, for the first time, we 534 

demonstrated quantitatively that the 𝜏soil was more sensitive to both temperature and precipitation 535 

than the 𝜏veg, and that the 𝜏soil dominated the response of the 𝜏eco to climate; furthermore, we 536 

revealed the underlying mechanism using optimized process parameters in a realistic 537 

disequilibrium state. In comparison with previous studies on turnover times that have primarily 538 

been conducted under the steady state assumption (SSA), where C input is more easily obtained 539 

to estimate turnover time (e.g., Carvalhais et al 2014, Yan et al 2017), this retrieval is closer to 540 

reality against the background of global environmental changes (Luo and Weng, 2011; Bellassen 541 

et al 2011). This non-steady method effectively reduces the biases induced by SSA when 542 

estimating the initial states of C pools, C allocation and turnover coefficients (Carvalhais et al 543 

2008; Carvalhais et al 2010; Zhou et al 2013), and it avoids underestimating turnover times and 544 

their sensitivities to climate in C sink regions (Ge et al 2019). In addition, the optimized parameters 545 

(i.e., plant allocation, wood and root turnover, and soil decomposition) and the estimations for the 546 

𝜏veg and 𝜏soil under dynamic disequilibrium all indicated high consistency with the existing 547 

empirical research based on field observations or experiments (Tables S5 and S6). Thus, our results 548 

provide reliable insight into the various climate sensitivities of 𝜏veg and 𝜏soil. Although soils in 549 

reality consist of C that turns over at different rates, ranging from fractions of a year to centuries, 550 

thus far, it has been challenging to separate soils into different pools and quantify each pool’s 551 

turnover time through empirical studies due to a lack of corresponding observed data (Luo et al 552 

2016). When considering the various soil pools in simulation, even the state-of-art ESMs cannot 553 

accurately fit observations and are widely different in their projections of soil C dynamics (Todd-554 

Brown et al 2014; Yan et al 2014). Our calculation implicitly assumes SOC as a single 555 
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homogenous cohort, and estimates the average turnover time of C in the soil, which is called the 556 

apparent turnover time (Carvalhais et al 2014). The approach is advantageous in representing the 557 

highly heterogeneous intrinsic properties of the terrestrial C cycle as an averaged apparent 558 

ecosystem property which is more intuitive to infer ecosystem-scale sensitivity of τ to climate 559 

change (Luo et al 2019; Fan et al 2020). Instead of focusing on the heterogeneity of individual 560 

compartment turnover times, we show the change in the C cycle on the ecosystem level using τ as 561 

an emergent diagnostic property. 562 

4.2 Understanding the mechanism of higher sensitivity of 𝜏soil than of 𝜏veg to climate 563 

The higher climate sensitivity of 𝜏soil originated partly from the higher sensitivity of the 564 

soil C decomposition rate (θsom) than of plant tissue mortality (e.g., the turnover rate of the largest 565 

vegetation pool, θwoo). Empirical research has shown that the θsom is highly dependent on soil 566 

temperature and moisture (Craine et al 2010; Davidson and Janssens, 2006; Thomsen et al 1999; 567 

Trumbore et al 1996; Wang et al 2018). By contrast, the responses of the θwoo or plant mortality 568 

to climate remain largely uncertain (Smith et al 2013). Many studies based on observations, 569 

experiments or modeling have suggested that there are weak to no relationships between the τwoo 570 

(i.e., the inverse of θwoo) and climate variables for tropical evergreen species (Malhi et al 2004; 571 

Quesada et al 2012; Galbraith et al 2013). Other studies have suggested large increases in the θwoo 572 

as the temperature increases, especially for temperate deciduous species (Adams et al 2010, 2017; 573 

McDowell et al 2016; Thurner et al 2016; Williams et al 2013). Climate-driven vegetation 574 

mortality usually occurs when there are extreme climatic events and related natural disturbances 575 

(e.g., drought, cold frost; Allen et al 2010; Reichstein et al 2013). Given this prior ecological 576 

knowledge, climate dependency was not represented in the θwoo process in DALEC; this model 577 

structure could be expected to weaken the estimated climate sensitivity of the τveg. 578 

In addition to θwoo, allocation to wood (fwoo) is another key process that codetermines the 579 

𝜏veg. The allocation among plant tissues has a clear relationship with climate, with a greater 580 

allocation to structural C (i.e., woody pools) with increasing temperature and precipitation (Figs. 581 

S3a-c, and 6a-b; Song et al 2018; Xia et al 2015; Guillemot et al 2015; Bloom et al 2016). This 582 

relationship accounted for the distinct increase in vegetation stocks in the warmer and humid 583 

regions (Figs. 5a and 5b). In addition, fauto first decreased and then increased as the temperature 584 

increased at the turning point of approximately 11 °C, which was in strong accordance with the 585 

synthetic analysis based on the global forest database and could be ascribed to the asymmetric 586 

response of RE and GPP to rising temperature (Piao et al 2010). This positive response of the fwoo 587 

and fauto to temperature and precipitation and the negative but weak response of τwoo to climate 588 

formed two compensatory forces that together contributed to the lower sensitivity of the τveg than 589 

of the 𝜏soil to climate. 590 

Overall, τveg is widely perceived to be regulated primarily through stand dynamics, such as 591 

establishment, growth, self-thinning, and age-related mortality, and stochastic processes, such as 592 

management or disturbances (e.g., wildfires, frost damage, extreme drought, insects, and land use 593 

change; Ahlström et al 2015; Erb et al 2016; Thurner et al 2016; Allen et al 2015; Anderegg et al 594 

2015; Wang et al 2018). These processes have complex and perhaps compensating interactions 595 

with climate. Climate change is then supposed to influence the frequency and severity of extreme 596 

climate events and thus potentially contributes to increased mortality rates. Accordingly, the biotic 597 

property, i.e., vegetation age, rather than climatic factors, becomes the determinant for the τveg 598 
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pattern (Fig. 7a), especially in forest ecosystems (Wang et al 2018). The effect of forest age on τveg 599 

helps explain the relatively weak response of τveg to climate. 600 

4.3 Implications of the various climate sensitivities of 𝜏soil and 𝜏veg for the forest C cycle 601 

We quantified the various climate sensitivities of 𝜏soil and 𝜏veg and verified our findings 602 

against the MDF global benchmark derived from CARDAMOM and simulations of state-of-the-603 

art LSMs from the TRENDY-v6 model set for the Northern Hemisphere; these comparisons all 604 

supported our findings of a higher climate sensitivity for 𝜏soil (Fig. 9). The response to climate in 605 

the TRENDY models, especially in the soil pool, was highly variable (Fig. 9). This variability is 606 

due to the poor constraint of C turnover times and its climatic response in current C cycle models 607 

(Anav et al 2013; Todd-Brown et al 2013; Friend et al 2014; Wieder et al 2015; Braghiere et al 608 

2021; Terrer et al 2021); thus, whether the forest C sink can persist with global climate change 609 

remains largely unclear (Goodale et al 2002; Friedlingstein et al 2014). Our work is the first to 610 

constrain the various climate sensitivities of 𝜏soil and 𝜏veg via numerous long-term C cycle 611 

observations at realistic disequilibrium. The detailed sensitivity values and their differences at 612 

different PFTs can inform future forest modeling research. The higher climate sensitivities of τsoil 613 

than τveg contributed to the varying pattern of τdiff. The magnitude of τdiff and the relationship of 614 

τdiff with climate (Figs. 4c and 4d) could be used as novel prior knowledge for ecological dynamic 615 

constraints in model-data assimilation (e.g., Bloom and Williams 2015) or for model evaluation 616 

and development to reduce the uncertainties of these two key ecosystem traits, 𝜏soil and 𝜏veg. 617 

 618 

Figure 9. Associations of turnover times in soil (𝜏soil, a) and vegetation (𝜏veg, b) and with 619 

temperature calculated from CARDAMOM (thick line) and TRENDY (multiple fine lines 620 

representing various models) in the Northern Hemisphere. In comparison, the data from the present 621 

study are shown as solid points (mean value with 1 SE). 622 

 623 

Currently, the identification of the dynamics and distribution of forest C sequestration is a 624 

hot topic in C cycle research (Mckinley et al 2011). In particular, forest soil C sequestration 625 

remains largely uncertain (Luyssaert et al 2010; Pan et al 2011). Quantifying highly uncertain 626 

ecosystem traits (e.g., C turnover times) and identifying their associations with soil C sequestration 627 

could yield a better understanding of the whole ecosystem C balance and its feedback to climate 628 

change. Here, we revealed that the difference between 𝜏soil and 𝜏veg, i.e., 𝜏diff, could be a novel 629 
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ecological indicator that is responsible for much of the variation in the capacity of C sequestration 630 

in soil. There was a significant decrease in the relative contribution of soil C sequestration with 631 

the decline in 𝜏diff under increasing temperature and precipitation. This decline in 𝜏diff was 632 

attributed primarily to the higher climate sensitivity of 𝜏soil than of 𝜏veg. To evaluate the robustness 633 

of this finding, we investigated not only the mean annual value of each site across climatic 634 

gradients but also the time-variant between-annual values against climate change at each site. Both 635 

types of values revealed the higher climate sensitivity of 𝜏soil than of 𝜏veg (Figs. S7 and S10), the 636 

lower 𝜏diff shortens in warmer and humid conditions (Fig. S8), and accordingly, the lower 637 

contribution of ∆𝐶𝑑𝑒𝑎𝑑 to NEP (Fig. S9). The higher sensitivity of 𝜏soil /𝜏veg in colder than warmer 638 

regions (Fig. S10) was well supported by Koven et al. (2017). Moreover, the overall temporal 639 

sensitivity of 𝜏soil/𝜏veg to temperature (Fig. S10, 𝜏soil: -1.34 yr/°C, 𝜏veg: -0.53 yr/°C) closely 640 

approximated the spatial sensitivity. The finding on the effect of various climate sensitivities of 641 

𝜏soil and 𝜏veg on 𝜏diff and C sequestration has strong implications for the prediction of terrestrial C 642 

sink distributions in soil and vegetation under global warming and changes in precipitation regimes 643 

(IPCC, 2021). In addition, this knowledge can guide the implementation of C mitigation policies. 644 

Specifically, in the cold high-latitude region, substantial attention should be devoted to soil 645 

conservation since C is more strongly sequestered into soils; this consideration is especially 646 

important for permafrost soil with large amounts of organic C, which will be vulnerable to higher 647 

decomposition rates under rapid global warming (Koven et al 2011). However, in warm and humid 648 

regions, we expect that more C will be sequestered in vegetation with increasing temperature and 649 

precipitation. For regional to global ecosystems with substantial young-aged afforestation under 650 

warm and humid conditions, e.g., southern China, the total ecosystem C sink can be expected to 651 

be persistently enhanced due to the intrinsic age-structure effect on forest growth and the high 652 

relative contribution of the vegetation C sink (Fang et al 2012; Yu et al 2014). 653 

Forest age affects the climate sensitivity of 𝜏veg and dominates the 𝜏veg pattern, which 654 

increases with increasing age (Wang et al 2018); accordingly, in the present study, the difference 655 

between the 𝜏veg and 𝜏soil gradually shortened with forest age (Fig. 7b). Since most old forests in 656 

this study are located in warmer and low-latitude regions, the age effect contributed to the negative 657 

relationships between 𝜏diff and climatic factors. Given the instinctive relationship between forest 658 

age and forest growth, e.g., biomass accumulation and primary productivity (Zaehle et al 2006; 659 

Goulden et al 2011), we expect that improved representations of forest age-driven mortality into 660 

calibrated process-based models will better capture the climate responses of these highly uncertain 661 

traits, i.e., 𝜏veg and 𝜏veg, and the age-structure-related effect on 𝜏diff and soil/vegetation C 662 

sequestration. In addition to forest age, the effect of climate on C cycling appeared to be indirectly 663 

mediated by nutrient availability. For example, nutrient availability (including the availability of 664 

nitrogen, phosphorous, and sulfur) plays a central role in the dynamic of both soil (Torn et al 2005; 665 

Posada and Schuur 2011) and vegetation (Gessler et al 2017) C turnover, which was controlled to 666 

a large extent by nitrogen availability (Liang et al 2019). Besides, current biogeochemical models 667 

usually lack microbial processes and thus miss an important feedback when considering the fate 668 

of C. Significantly different sensitivities have been highlighted between chemical modelling (with 669 

standard first-order kinetic representation of C decomposition) and biological modelling (with 670 

control of C decomposition through microbial activity) approaches for turnover process (Xenakis 671 

and Williams, 2014). Therefore, these mechanisms (e.g., C-nitrogen coupled cycling and 672 

interactions, and microbial activity) could be implemented in a model like DALEC and model data 673 

fusion. These advances will help guide regional and global forest management and C mitigation 674 

efforts. 675 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

5 Conclusions 676 

The present study provides the first quantification of the climate sensitivities of τsoil and 677 

τveg and their differences at a realistic disequilibrium state. We gained insight into the mechanisms 678 

underlying the various climate sensitivities based on key C cycle process parameters: the opposite 679 

climate response between the woody allocation coefficient and woody turnover rate, the weaker 680 

climate sensitivity of plant mortality than of soil decomposition, and the strong age-structured 681 

effect on τveg together contributed to the lower climate sensitivity of τveg than of τsoil. The various 682 

climate sensitivities of τsoil and τveg determined the variation in τdiff, which was revealed as an 683 

important indicator of the soil C sequestration capacity. The identification of the climate 684 

sensitivities of τsoil/τveg and their effects on τdiff and the relative contribution of soil C sequestration 685 

improves our understanding of C-climate feedback. Furthermore, the results of this study can 686 

facilitate the prediction of terrestrial C distribution in soil/vegetation under future climate change 687 

and guide both the implementation of C mitigation policies on forest plantations and soil 688 

conservation to dampen anthropogenic climate warming and help achieve C neutrality. 689 
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