82 research outputs found

    Stretchable hybrid bilayered luminescent composite based on the combination of strain-induced and triboelectrification-induced electroluminescence

    Get PDF
    High luminescence intensity from materials that are excited by external stimuli is highly desired. In this work, a stretchable hybrid luminescent composite (HLC) that has multiple luminescence modes is reported. The luminescence can be excited either by externally applied mechanical strain or by a moving object that slides against the HLC. When the HLC is deformed, such as being twisted or folded, the ZnS/Cu phosphor experiences mechanical strain that trigger the mechanoluminescence (ML) of the phosphors. Moreover, as the HLC slides against a contact object, the triboelectrification at the contact interface induces the electroluminescence of phosphor. Here, a series of internal and external factors were studied on how they influence the luminescent intensity. It is found that the luminescent intensity from the two modes can be superposed. The HLC material was used to fabricate a fiber-based luminescent device that can be driven by air flow. The overall luminescent intensity is enhanced by over 72% compared to that obtained solely from the ML. The HLC reported in this work has such potential applications as self-powered light sources and sensors as means of detecting dynamic motions and interactio

    A \u3ci\u3ecis\u3c/i\u3e-Acting Mutation in the \u3ci\u3ePxABCG1\u3c/i\u3e Promoter Is Associated with Cry1Ac Resistance in \u3ci\u3ePlutella xylostella\u3c/i\u3e (L.)

    Get PDF
    The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism

    Detection and Epidemic Dynamic of ToCV and CCYV with \u3cem\u3eBemisia tabaci\u3c/em\u3e and Weed in Hainan of China

    Get PDF
    Background: In recent years, two of the crinivirus, Tomato chlorosis virus (ToCV) and Cucurbit chlorotic yellows virus (CCYV) have gained increasing attention due to their rapid spread and devastating impacts on vegetable production worldwide. Both of these viruses are transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), in a semi-persistent manner. Up to now, there is still lack of report in Hainan, the south of China. Methods: We used observational and experimental methods to explore the prevalence and incidence dynamic of CCYV and ToCV transmitted by whiteflies in Hainan of China. Results: In 2016, the chlorosis symptom was observed in the tomato and cucumber plants with a large number of B. tabaci on the infected leaves in Hainan, China, with the incidence rate of 69.8% and 62.6% on tomato and cucumber, respectively. Based on molecular identification, Q biotype was determined with a viruliferous rate of 65.0% and 55.0% on the tomato and cucumber plants, respectively. The weed, Alternanthera philoxeroides near the tomato and cucumber was co-infected by the two viruses. Furthermore, incidence dynamic of ToCV and CCYV showed a close relationship with the weed, Alternanthera philoxeroides, which is widely distributed in Hainan. Conclusion: Our results firstly reveal that the weed, A. philoxeroides is infected by both ToCV and CCYV. Besides, whiteflies showed a high viruliferous rate of ToCV and CCYV. Hainan is an extremely important vegetable production and seed breeding center in China. If the whitefly can carry these two viruses concurrently, co-infection in their mutual host plants can lead to devastating losses in the near future

    A cis-acting mutation in the PxABCG1 promoter is associated with Cry1Ac resistance in Plutella xylostella (L.)

    Get PDF
    The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism

    In situ time-resolved FTIRS study of adsorption and oxidation of ethylene glycol on Pt(100) electrode

    Get PDF
    Adsorption and oxidation of ethylene glycol (EG) on Pt(100) electrode were studied by in situ time-resolved FTIRS (TRFTIRS). The TRFTIR spectra recorded at 0.10 V illustrate that an IR band appears near 2050 cm(-1) at t > 5 s, corresponding to linearly bonded CO formed in dissociative adsorption of EG The TRFTIR results have confirmed also that CO species are distributed uniformly on Pt(100) surface. Another band appears near 2342 cm(-1) at t < 70 s, associating with IR absorption of CO2 produced in the direct oxidation of EG With the increase of electrode potential, the direct oxidation of EG becomes gradually the main reaction. When the potential is above 0.40 V, the oxidation of EG occurs mainly via the reactive intermediates, i.e. species containing -COOH determined by in situ TRFTIRS

    A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness

    Get PDF
    Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium Bacillus thuringiensis (Bt), which delay the evolution of resistance to this pathogen. The insect pest Plutella xylostella has evolved a mechanism to resist Bt toxins without incurring significant fitness costs. Here, we reveal that non-phosphorylated and phosphorylated forms of a MAPK-modulated transcription factor fushi tarazu factor 1 (FTZ-F1) can respectively orchestrate down-regulation of Bt Cry1Ac toxin receptors and up-regulation of non-receptor paralogs via two distinct binding sites, thereby presenting Bt toxin resistance without growth penalty. Our findings reveal how host organisms can co-opt a master molecular switch to overcome pathogen invasion with low cost, and contribute to understanding the underlying mechanism of growth-defense tradeoffs during host-pathogen interactions in P. xylostella

    Mutation-induced remodeling of the BfmRS two-component system in Pseudomonas aeruginosa clinical isolates

    Get PDF
    Genetic mutations are a primary driving force behind the adaptive evolution of bacterial pathogens. Multiple clinical isolates of Pseudomonas aeruginosa, an important human pathogen, have naturally evolved one or more missense mutations in bfmS, which encodes the sensor histidine kinase of the BfmRS two-component system (TCS). A mutant BfmS protein containing both the L181P and E376Q substitutions increased the phosphorylation and thus the transcriptional regulatory activity of its cognate downstream response regulator, BfmR. This reduced acute virulence and enhanced biofilm formation, both of which are phenotypic changes associated with a chronic infection state. The increased phosphorylation of BfmR was due, at least in part, to the cross-phosphorylation of BfmR by GtrS, a noncognate sensor kinase. Other spontaneous missense mutations in bfmS, such as A42E/G347D, T242R, and R393H, also caused a similar remodeling of the BfmRS TCS in P. aeruginosa. This study highlights the plasticity of TCSs mediated by spontaneous mutations and suggests that mutation-induced activation of BfmRS may contribute to host adaptation by P. aeruginosa during chronic infections

    MAPK-activated transcription factor PxJun suppresses PxABCB1 expression and confers resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.)

    Get PDF
    Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that MAPK-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Herein, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay (Y1H) demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins.ImportanceThe transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects

    Crystal Structure of EHEC Intimin: Insights into the Complementarity between EPEC and EHEC

    Get PDF
    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Ã… resolution, together with a mutant (IntN916Y) at 2.6 Ã…. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7
    • …
    corecore