17 research outputs found

    Oncogenic Kras Activates a Hematopoietic-to-Epithelial IL-17 Signaling Axis in Preinvasive Pancreatic Neoplasia

    Get PDF
    SummaryMany human cancers are dramatically accelerated by chronic inflammation. However, the specific cellular and molecular elements mediating this effect remain largely unknown. Using a murine model of pancreatic intraepithelial neoplasia (PanIN), we found that KrasG12D induces expression of functional IL-17 receptors on PanIN epithelial cells and also stimulates infiltration of the pancreatic stroma by IL-17-producing immune cells. Both effects are augmented by associated chronic pancreatitis, resulting in functional in vivo changes in PanIN epithelial gene expression. Forced IL-17 overexpression dramatically accelerates PanIN initiation and progression, while inhibition of IL-17 signaling using genetic or pharmacologic techniques effectively prevents PanIN formation. Together, these studies suggest that a hematopoietic-to-epithelial IL-17 signaling axis is a potent and requisite driver of PanIN formation

    Regulatory T cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL-17-dependent colon carcinogenesis.

    No full text
    Many epithelial cancers are associated with chronic inflammation. However, the features of inflammation that are pro-carcinogenic are not fully understood. Tregs typically restrain overt inflammatory responses and maintain intestinal immune homeostasis. Their immune suppressive activity can inhibit inflammation-associated cancers. Paradoxically, we show that colonic Tregs initiate IL-17-mediated carcinogenesis in multiple intestinal neoplasia mice colonized with the human symbiote ETBF. Depletion of Tregs in ETBF-colonized C57BL/6 Foxp3(DTR) mice enhanced colitis but diminished tumorigenesis associated with shifting of mucosal cytokine profile from IL-17 to IFN-γ; inhibition of ETBF-induced colon tumorigenesis was dependent on reduced IL-17 inflammation and IFN-γ-independent. Treg enhancement of IL-17 production is cell-extrinsic. IL-2 blockade restored Th17 responses and tumor formation in Treg-depleted animals. Our findings demonstrate that Tregs limit the availability of IL-2 in the local microenvironment, allowing Th17 development necessary to promote ETBF-triggered neoplasia and thus unveil a new mechanism whereby Treg responses to intestinal bacterial infection can promote tumorigenesis

    Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells

    No full text
    Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using ApcMin mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis
    corecore