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SUMMARY
Many human cancers are dramatically accelerated by chronic inflammation. However, the specific cellular
and molecular elements mediating this effect remain largely unknown. Using a murine model of pancreatic
intraepithelial neoplasia (PanIN), we found that KrasG12D induces expression of functional IL-17 receptors
on PanIN epithelial cells and also stimulates infiltration of the pancreatic stroma by IL-17-producing immune
cells. Both effects are augmented by associated chronic pancreatitis, resulting in functional in vivo changes
in PanIN epithelial gene expression. Forced IL-17 overexpression dramatically accelerates PanIN initiation
and progression, while inhibition of IL-17 signaling using genetic or pharmacologic techniques effectively
prevents PanIN formation. Together, these studies suggest that a hematopoietic-to-epithelial IL-17 signaling
axis is a potent and requisite driver of PanIN formation.
INTRODUCTION

A hallmark of many solid tumors is the prominent fibrocellular

stroma surrounding the neoplastic epithelium. This stromal

expansion is especially dramatic in both invasive pancreatic

cancer and its noninvasive precursor lesions. Recent studies

suggest that this stromamay be required for tumormaintenance,

progression, and resistance to chemotherapy (Jacobetz et al.,

2013; Olive et al., 2009; Provenzano et al., 2012). However, infor-

mation has only recently begun to emerge regarding the cellular

and molecular elements mediating this stromal effect. Much

recent attention has been focused on the role of activated
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cancer. In mice, pancreatic cancer progression is accelerated in

the presence of associated chronic pancreatitis (Guerra et al.,

2007; Habbe et al., 2008; Kopp et al., 2012), and chronic inflam-

mation itself is capable of inducing metaplastic changes resem-

bling pancreatic intraepithelial neoplasia (PanIN) (Strobel et al.,

2007). In humans, many of the known risks factors for pancreatic

cancer, including chronic pancreatitis, diabetes, alcohol con-

sumption, cystic fibrosis, and tobacco use, are all commonly

characterized by the induction of chronic inflammation (Greer

and Whitcomb, 2009; Hassan et al., 2007; Maisonneuve et al.,

2007; Wittel et al., 2006).

Among the inflammatory cell types potentially mediating this

effect, a subset of IL-17-producing T helper cells (TH17) has

been shown to play an active role in both chronic inflammation

(Kimura et al., 2007) and inflammation induced-tumorigenesis

(Wu et al., 2009; Xiao et al., 2009). TH17 cell differentiation

requires IL-6 and TGF-b, and both factors are abundant in the

pancreatic tumor microenvironment (Lesina et al., 2011; Löhr

et al., 2001). Based on the strong association between chronic

inflammation and pancreatic cancer, we therefore sought to

identify the role of IL-17 producing hematopoietic cells in the

earliest stages of pancreatic neoplasia.

RESULTS

Human Pancreatic Cancer Precursor Lesions Are
Infiltrated by IL-17-Producing T Cells and Overexpress
IL-17 Receptor A
To better characterize inflammatory cell types participating in

early pancreatic neoplasia, we labeled human tissue arrays us-

ing antibodies against RORgt, a transcription factor that directs

differentiation of IL-17-producing T cells (Ivanov et al., 2006).

While RORgt+ cells were rarely identified in normal human

pancreas, they were abundant in human pancreatic preneo-

plastic tissue. RORgt+ cells were localized in the stroma imme-

diately adjacent to areas of acinar-ductal metaplasia (ADM), as

well as early or advanced PanIN (Figure 1A). Compared

to normal, we calculated an �25-fold increase in the abundance

of RORgt+ cells in human chronic pancreatitis and an �50-fold

increase associated with PanIN lesions (Figure S1 available

online).

In order to identify relevant cell types capable of responding to

IL-17, we examined the expression of the IL-17 Receptor

A (IL-17RA) in the same human tissue arrays and we detected

no IL-17RA expression in normal acinar tissue, low levels of

IL-17RA expression in ADMs and higher levels in PanINs (Figures

1B–1E). In transitional lesions containing both cuboidal ADM

cells and tall, columnar PanIN cells, we observed high level stain-

ing in the PanIN component, but low staining in the adjacent

cuboidal ADM cells (Figures 1D and 1F).

Oncogenic Kras and Chronic Pancreatitis
Synergistically Recruit TH17 and IL-17+/gdT Cells to the
Pancreatic Microenvironment
To functionally determine the significance of IL-17 signaling

in early pancreatic neoplasia, we utilized Mist1CreERT2/+;

LSL-KrasG12D (KCiMist1) or control Mist1CreERT2/+ (CiMist1) mice

treated with and without cerulein (Habbe et al., 2008) (Fig-

ure 2A). In the setting of concomitant cerulein-induced
622 Cancer Cell 25, 621–637, May 12, 2014 ª2014 Elsevier Inc.
chronic pancreatitis, these mice rapidly develop murine PanIN

(mPanIN) within 4 weeks following Kras activation, with pro-

gression to advanced mPanIN by 9 weeks posttamoxifen (Fig-

ures S2A–S2D). Similar to other transgenic systems used for

the induction of pancreatic tumorigenesis (Corcoran et al.,

2011), we detected phosphorylation of Stat3 in tamoxifen-

treated KCiMist1 mice, both within the mPanIN epithelium and

in the surrounding stroma (Figure S2E). When we assayed

media conditioned by whole pancreatic suspensions, we

observed a KrasG12D- and chronic pancreatitis-dependent

increase in the production of IL-6, consistent with prior reports

(Corcoran et al., 2011), and IL-17A (Figures S2F and S2G).

Based on the known roles for IL-6 and Stat3 in the peripheral

differentiation of naive CD4+ T helper cells into TH17 cells, we

performed flow cytometry on single cells obtained from colla-

genase-digested pancreas and observed that the relative and

absolute numbers of CD45+ hematopoietic cells displaying

intracellular staining for IL-17A were increased in the mice

with chronic pancreatitis (CiMist1 + CP) or oncogenic Kras

(KCiMist1). A synergistic increase in the number of IL-17A ex-

pressing cells was observed in mice in which KrasG12D activa-

tion was combined with chronic pancreatitis (KCiMist1 + CP)

(Figure 2B). We further assessed multiple cellular markers to

more definitively characterize IL-17A-expressing cells and

found that CD4+ T cells and gdT cells were the two types of

cells that also stained for intracellular IL-17A (Figure 2C).

We observed no colabeling of IL-17 with Gr1, CD11b, CD117,

or NKp46 (data not shown), ruling out macrophages, neutro-

phils, NK cells, mast cells, and MDSCs as significant sources

of IL-17.

In attempting to quantify the relative expression of IL-17 by

TH17 and gdT cells, we noted that while CD4+ T cells were

approximately five times more abundant than gdT cells within

the pancreatic microenvironment from KCiMist1 + CP mice,

only �10% of CD4+ T cells expressed IL-17A, compared to

�50% of gdT cells (Figures 2C and S2H), suggesting that the

contribution of IL-17A from both cellular sources may be similar.

In order to determine how the expression of IL-17A and other

cytokines was dynamically regulated within the CD4+ and gdT

cell compartments during mPanIN formation, we performed

quantitative RT-PCR (qRT-PCR) for IL-17A, IL-22, IFNg, IL-4,

and TNFa on RNA isolated from fluorescence-activated cell sort-

ing (FACS)-sorted CD4+ and gdTCR+ cells harvested from mice

with either chronic pancreatitis alone (CiMist1 + CP), oncogenic

Kras activation alone (KCiMist1) or oncogenic Kras activation

combined with chronic pancreatitis (KCiMist1 + CP). This analysis

revealed that the combination of oncogenic Kras and chronic

pancreatitis synergistically and dramatically activated expres-

sion of IL-17A and IL-22 in both the CD4+ and gdTCR+ popula-

tions, with less pronounced effects observed on expression of

IFNg, IL-4, and TNFa (Figure 2D).

To gain insight into a possible functional contribution of IL-17-

producing cells during early pancreatic neoplasia, we depleted

CD4+ T cells from KCiMist1 + CP mice with weekly GK1.5 injec-

tions. This resulted in a significant delay in PanIN formation,

with no overt change in the overall magnitude of the associated

stromal response (Figures 2E–2G). These findings led us to

hypothesize that IL-17-producing T cells might exert a proneo-

plastic influence during PanIN formation.
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Figure 1. Human Pancreatic Cancer Precursor Lesions Are Infiltrated by IL-17-Producing T Cells and Overexpress the IL-17 Receptor A
(A) Representative sections of RORgt+ cells infiltrating human ADM (left), early PanIN (middle), and advanced PanIN (right). Control sections treated with

hematoxylin for morphological reference are shown on the top panels. Scale bars represent 50 mm.

(B) Immunohistochemical detection of IL-17RA in normal acinar tissue (left, scale bar represents 50 mm), ADMs (middle, scale bar represents 100 mm), and PanIN

lesion (right, scale bar represents 150 mm).

(C) Immunofluorescent detection of IL-17RA on human ADMs (left), early PanIN (middle), and advanced PanIN (right). Scale bars represent 50 mm.

(D) Hematoxylin and eosin (H&E) staining of human tissue containing transitional elements comprised of both ADM and PanIN. Scale bars represent 50 mm.

(E and F) Immunofluorescent detection of IL-17RA on a PanIN (E) and on a transitional ADM (F). Scale bars represent 150 mm.

See also Figure S1.
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Figure 2. Oncogenic Kras and Chronic Pancreatitis Synergistically Recruit TH17and IL-17+ gdT Cells to the PanIN Microenvironment

(A) Protocol followed for tamoxifen-mediated KrasG12D activation and cerulein-mediated induction of chronic pancreatitis in KCiMist1 and CiMist1 mice.

(B) Flow cytometry dot plots for dual labeling of CD45 and intracellular IL-17A on dispersed pancreatic cells from the indicated mice. Control flow chart (Left)

represents pancreatic cells from a KCiMist-1 mouse stained for CD45 only.

(legend continued on next page)
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Pancreatic Overexpression of IL-17A Results in
Accelerated PanIN Initiation and Progression
In order to gain more insights into possible influences of IL-17A

on PanIN initiation and progression, we next performed gain-

of-function studies by injecting IL-17A encoding (AdIL-17A) or

control (Ad-EGFP or Ad-Luc) adenoviruses into the pancreas in

a manner that resulted in relatively uniform adenoviral gene de-

livery (Figures 3A and S3A). Following injection of AdIL-17, we

observed a 40-fold increase in IL-17A in media conditioned by

dissociated pancreatic cells (Figure 3B). To determine the effect

of IL-17A overexpression on PanIN formation, KCiMist1 mice un-

derwent pancreatic adenoviral infection one week following

tamoxifen induction of KrasG12D expression (Figure 3A). These

studies were performed in the absence of associated cerulein

pancreatitis. Six weeks later (7 weeks posttamoxifen), mice

were sacrificed and the pancreas was processed for histopath-

ologic examination and morphometric quantification of total

surface area occupied by ADM, early PanIN, late PanIN, and

fibroinflammatory stroma. In the absence of associated cerulein

pancreatitis, control pancreas displayed only focal changes

comprised predominantly of ADM, with rare associated early

PanIN and minimal stromal expansion (Figures 3C and 3D). In

contrast, overexpression of IL-17 resulted in a dramatic increase

of ADM and PanIN formation, as well as markedly enhanced

stromal expansion as assessed by Masson’s trichrome staining

(Figures 3E and 3F). Mice infected with AdIL-17A displayed

a >4-fold increase in ADM compared to mice infected with

Ad-Luc (3.97 ± 0.89 versus 0.95% ± 0.24%) and a >100-fold

increase in early PanINs (7.5 ± 2.48 versus 0.07% ± 0.14%) (Fig-

ure 3G). Advanced PanINs were absent in the Ad-Luc-infected

control pancreas but occupied 0.75% ± 0.29% of total surface

area in pancreas infected with AdIL-17A (Figure 3G). Using the

same quantification method, the pancreatic surface area occu-

pied by fibroinflammatory stroma was found to be 20-fold

greater in mice infected with AdIL-17 compared to mice infected

with Ad-Luc (31.61 ± 8.31 versus 1.56% ± 0.56%). This IL-17A-

accelerated phenotype, in the absence of cerulein-induced

chronic pancreatitis, was accompanied by an associated reduc-

tion in surface area displaying normal histology (56.15% ±

10.62% for AdIL-17A versus 97.4% ± 0.71% for Ad-Luc)

(Figure 3H). To rule out an inflammatory effect induced by adeno-

virus, we further confirmed no differences between Ad-Luc- and

PBS-injected animals in terms of pancreatic area occupied by

either inflammation or preneoplastic lesions (Figures S3B and

S3C). Finally, by crossing KCiMist1 mice with a Rosa26mTmG line-

age tracing mouse line to produce KCiMist1G mice, we were able

to confirm that IL-17 accelerated PanINs were derived from the

Mist1+ acinar compartment (Figure S3D). In addition to acceler-

ating the appearance and progression of epithelial PanINs, IL-

17A overexpression also accelerated the appearance of GFP+,
(C) Quantification of CD4+ T cells, gdT cells and their double staining with intracell

cells. Results are shown as percent of CD45+ cells ± SEM (n = 3–4).

(D) RT-PCR-based quantification of IFNg, IL-4, TNFa, IL-22, and IL-17A in CD4+

mice. Data was normalized to CiMist1 + CP mice and results were presented as r

(E) Representative H&E staining of pancreatic tissue sections fromKCiMist1+ CPm

bars represent 70 mm.

(F and G) Tridimensional quantification of fractional cross sectional area occupie

tissue (G) in KCiMist1 that received PBS or GK1.5 injection. Results are shown as

See also Figure S2.
E-cadherin� cells entering the stroma through a process of early

EMT (see arrows in Figure S3D) (Rhim et al., 2012). These results

demonstrate that IL-17A is capable of dramatically accelerating

PanIN initiation and/or progression, in a manner similar to that

observed for cerulein pancreatitis.

Genetic Ablation of IL-17A within the Hematopoietic
Compartment Results in Delayed PanIN Initiation and
Progression
The above data suggest that TH17 and IL-17+/gdT cells recruited

to PanIN-forming pancreas may play a functionally significant

role in driving PanIN progression. In order to directly test this

hypothesis, we eliminated hematopoietic IL-17A production in

KCiMist1 mice by lethal irradiation followed by rescue with trans-

planted bone marrow (BM) harvested from IL-17A knockout

mice (KCiMist1/IL-17KO BM). To control for treatment effects unre-

lated to IL-17, we similarly transplanted additional irradiated

KCiMist1 mice with bone marrow harvested from wild-type mice

(KCiMist1/IL-17WT BM). Mice undergoing lethal irradiation and

bone marrow transplant displayed an element of radiation-

induced pancreatic inflammation (Figure S4), obviating the

need for the induction of additional inflammation using cerulein.

Transplants were performed on mice at 8–10 weeks of age, and

tamoxifen induction of KrasG12D expression was performed

8 weeks following bone marrow transplantation (Figure 4A).

Immediately prior to proceeding with tamoxifen injections, we

confirmed functional bone marrow chimerism in KCiMist1/IL-

17KO mice by sacrificing a cohort of these mice, isolating their

splenocytes, placing them in TH17 polarization conditions and

restimulating them with phorbol 12-myristate 13-acetate

(PMA)/Ionomycin. Using flow cytometry for CD45+ and intracel-

lular IL-17A, we confirmed that KCiMist1/IL-17KO BM had indeed

been reconstituted with IL-17AKO bone marrow, as their spleno-

cytes failed to produce significant IL-17A after 1 week of TH17

polarization and restimulation (Figure 4B). Eight weeks after

Kras activation (or 16 weeks after the transplantation), mice

were sacrificed and pancreatic tissue was subjected to morpho-

metric analysis to quantify the total pancreatic surface area

occupied by ADM, PanIN, and fibroinflammatory stroma.

KCiMist1/IL-17KOBMmice displayed a 4-fold reduction in pancre-

atic surface occupied by ADMs (2.41 ± 0.7 versus 11.25% ±

3.19%) and a near complete prevention of PanIN formation

(0.07 ± 0.07 versus 4.62% ± 0.76%) (Figures 4C–4F and 4G).

For PanIN identification, Alcian blue was used to confirm the

presence of mucin in the apical cytoplasm of PanIN cells (Figures

4H and 4I). Masson’s trichrome staining demonstrated a

decrease in collagen deposition in the pancreas of KCiMist1/IL-

17KO BM mice (Figures 4J and 4K) and quantification of the

pancreatic fibroinflammatory stromal component showed that

KCiMist1/IL-17KO BM mice displayed less prominent stromal
ular IL-17A from the indicated mice. TH17 cells were defined as CD45+/IL-17A+

and gdT cells sorted by FACS from the pancreas of KCiMist1 and KCiMist1+ CP

elative expression of cytokines/ sorted cell. SEM from triplicates is shown.

ice that received PBS or GK1.5 injections at 7 weeks after Kras activation. Scale

d by ADMs or PanINs (F) or occupied by fibroinflammatory stroma or normal

mean ± SEM (n = 4) (*p < 0.05; NS, no statistical significance).

Cancer Cell 25, 621–637, May 12, 2014 ª2014 Elsevier Inc. 625
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Figure 3. Pancreatic Overexpression of IL-17A Results in Increased Tumor Initiation and Progression

(A) Protocol for Kras activation and delivery of adenovirus to KCiMist1 mouse pancreas.

(B) ELISA-based quantification of IL-17A production by dispersed pancreatic cells isolated 1 week following injection of the indicated adenovirus. Results are

shown as mean concentration ± SEM (n = 4).

(C–F) Representative H&E (C and E) or Masson’s trichrome (D and F) staining of pancreatic tissue harvested from KCiMist1 mice injected with Ad-Luc (C and D) or

AdIL-17A (E and F) at 7 weeks after Kras activation. Scale bars represent 70 mm.

(G and H) Quantification of fractional cross sectional area occupied by ADM, early PanIN, or advanced PanIN (G) or occupied by fibroinflammatory stroma or

normal tissue (H) in KCiMist1 mice infected with Ad-Luc versus AdIL-17A. Results are shown as mean ± SEM (n = 9–10) (*p < 0.05; **p < 0.01).

See also Figure S3.
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Figure 4. Genetic Ablation of IL-17A within the Hematopoietic Compartment Results in Delayed PanIN Initiation and Progression
(A) Protocol for the generation of KCiMist-1/IL-17AWT BM and KCiMist-1/IL-17AKO BM chimeric animals.

(B) Eight weeks following lethal irradiation and BM transplantation as indicated, splenocytes were cultured in TH17 polarization conditions and restimulated with

PMA/Ionomycin. Bone marrow chimerism was assessed by flow cytometry on polarized splenocytes labeled for cell surface CD45 and intracellular IL-17A.

Double-positive cells were quantified and results expressed as percent of total splenocytes.

(C–F) Representative H&E staining on pancreatic tissue sections from KCiMist-1/IL-17AWT BM (C and D) and KCiMist-1/IL-17AKO BM (E and F) mice at 8 weeks

following KrasG12D activation. Scale bars represent 400 mm (C and E) and 80 mm (D and E).

(G) Quantification of fractional cross-sectional area occupied by ADM or PanIN in the pancreas of indicated mice. Results are shown as mean ± SEM (n = 5–7)

(*p < 0.05; **p < 0.01).

(H and I) Alcian blue staining for mucins on pancreatic tissue sections from KCiMist-1/IL-17AWT BM (H) and KCiMist-1/IL-17AKO BM (I) mice. Scale bars

represent 80 mm.

(legend continued on next page)
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expansion than that observed in KCiMist1/IL-17WT BM mice

(12.69 ± 3.04 versus 56.22% ± 6.05%) (Figure 4L). Correspond-

ingly, areas from KCiMist1/IL-17KO BM mice displayed a signifi-

cantly larger pancreatic surface area characterized by normal

histology (84.07% ± 3.6% for KCiMist1/IL-17KO BM versus

27.08% ± 9.8% for KCiMist1/IL-17WT BM) (Figure 4L). These

data confirm the functional significance of IL-17 production by

TH17 and IL-17+/gdT cells in the pathogenesis of early pancreatic

neoplasia.

Pharmacological Neutralization of IL-17 Pathway
Results in Delayed Initiation and Progression of PanINs
Antibody-based neutralization of IL-17 signaling is currently

being evaluated in the treatment of human autoimmune disease

(Genovese et al., 2010; Leonardi et al., 2012; Papp et al., 2012;

van den Berg and Miossec, 2009). In order to determine whether

this clinically-relevant mode of IL-17 inhibition might similarly

abrogate PanIN initiation and progression, we treated KCiMist1 +

CP mice with a cocktail of monoclonal antibodies directed

against IL-17RA (Stagg et al., 2011; Teng et al., 2012) and the

cytokines IL-17A (Sarkar et al., 2009) and IL-17F. Antibodies

were administered by weekly intraperitoneal (IP) injection, with

treatment starting 48 hr prior to tamoxifen induction and followed

by 3 weeks of cerulein injections to induce chronic pancreatitis

(Figure 5A). Morphometric analysis revealed that the fraction of

total pancreatic surface area occupied by ADMs was identical

in control mice and in mice receiving neutralizing antibodies.

However, there was a 4-fold decrease in surface area occupied

by early PanINs (6.5 ± 3.69 versus 26.41% ± 4.67%) and

a >3-fold reduction in advanced PanINs (1.17 ± 1.1 versus

4.86 ± 0.91) in KCiMist1 + CP mice treated with IL-17 pathway

neutralizing antibodies compared to control mice (Figures 5B

and 5C). There was a modest decrease in fibroinflammatory

stromal area in antibody-treated mice (19.3 ± 8.1 versus 32.4 ±

1.3) but this did not reach statistical significance (Figure 5D).

Similarly, the fraction of total pancreatic surface area displaying

normal histology was doubled in mice treated with neutralizing

antibodies compared to controls (64.67 ± 14.4 versus 32.1% ±

6.03%) (Figure 5D). When we performed flow cytometry analysis

for multiple cellular types, we detected a decrease in pancreatic

infiltration by MDSC, neutrophils and macrophages in mice that

received IL-17 neutralizing antibodies (Figure S5). As with

genetic ablation of hematopoietic IL-17, these studies confirm

a critical role for endogenous IL-17 signaling in PanIN initiation

and progression and further suggest that currently available,

clinical-grade neutralizing antibodies may represent a viable

option for pancreatic cancer prevention and/or treatment.

IL-17RA Expression Is Induced in Murine Pancreatic
Epithelium by Oncogenic Kras Activation
We next sought to determine whether the influence of IL-17 on

PanIN initiation and progression was mediated directly on PanIN

epithelial cells. Using a well characterized anti-IL-17RA antibody
(J and K) Masson’s trichrome staining for collagen deposition in pancreas from

represent 40 mm.

(L) Quantification of fractional cross-sectional area occupied by fibroinflammatory

as mean ± SEM (n = 5–7) (*p < 0.05; **p < 0.01).

See also Figure S4.
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(Figures S6A–S6C), we detected minimal pancreatic epithelial

expression of IL-17RA by immunofluorescent labeling of pancre-

atic tissue harvested from either CiMist1 or CiMist1+CP mice (Fig-

ures 6A and 6B). In contrast, we observed significant IL-17RA

expression on the basal membrane of ADM and mPanIN epithe-

lial cells in KCiMist1 mice (Figure 6C) and even more intense

labeling of the more abundant ADMs and mPanINs observed in

KCiMist1 + CPmice (Figure 6D). Furthermore, selected pancreatic

cells undergoing EMT were found to express IL-17RA, as

assessed in KCiMist-1G + CP mouse pancreas by colabeling for

IL-17RA and GFP (Figure S6D). Using E-cadherin labeling to

discern individual cells in KCiMist1 mouse pancreas, we found

that 9.3% ± 4.09% of ADM cells and 23.5% ± 8.07% of PanIN

cells stained positive for IL-17RA (Figures 6E andS6E, left panel).

In KCiMist1 + CP mice, these fractions increased to 33.4% ±

4.52% for ADM cells and 50.5% ± 9.03% PanIN cells (Figures

6E and S6E, right panel). To further confirm and validate the

expression of IL-17RA in the oncogenic epithelium, we examined

IL-17RA expression by qRT-PCR and flow cytometry. In order to

eliminate normal ductal epithelial cells from this analysis, we

again utilized Rosa26mTmG mice, generating KCiMist1G mice in

which GFP effectively marked cells undergoing effective Cre-

based recombination (Figure S6F). Three months following

tamoxifen administration, we observed a dramatic increase in

IL-17RA expression in FACS-isolated PanIN epithelial cells (Fig-

ure 6F). Flow cytometry on single cells harvested from KCiMist1G

and control CiMist1G mice also revealed a 250-fold increase

(2.48% versus 0.01%) in the number of GFP+ cells expressing

IL-17RA in KCiMist1G mouse pancreas compared to CiMist1G

controls, indicating cell-autonomous activation of IL-17RA by

oncogenic Kras (Figure 6G). The induction of IL-17RA expres-

sion by oncogenic Kras was also observed in the context of

chronic pancreatitis, with a >60-fold increase in the fraction

of GFP+/IL-17RA+ cells observed in KCiMist1G + CP mouse

pancreas at 2 months following Kras activation and

a >100-fold increase at 4 months (Figure 6H).

KrasG12D-Induced Activation of IL-17RA Expression
on PanIN Epithelial Cells Is Associated with In Vivo
Functional Responses to IL-17
In order to assess the functionality of IL-17 receptors on onco-

genic pancreatic epithelium, we treated KCiMist1G+ CP mice

that had already developed mPanIN lesions with a cocktail of

monoclonal antibodies directed against IL-17RA and the cyto-

kines IL-17A and IL-17F. Beginning at 6 weeks following Kras

activation, antibodies were administered by two IP injections

during the week prior to sacrifice (Figure 7A). At week 7, mice

were sacrificed and GFP+ mPanIN epithelial cells were isolated

by FACS. Microarray-based whole transcriptome expression

analysis was performed comparing GFP+ cells sorted from

mice that had received IL-17 neutralizing antibodies versus

mice that received IgG isotype control antibodies. When differ-

entially expressed genes were subjected to Ingenuity pathway
KCiMist-1/IL-17AWT BM (J) and KCiMist-1/IL-17AKO BM (K) mice. Scale bars

stroma or normal tissue in the pancreas of indicated mice. Results are shown
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Figure 5. Pharmacological Neutralization of IL-17 Pathway Results in Delayed Initiation and Progression of PanINs

(A) Protocol followed for induction of KrasG12D expression and administration of IL-17 pathway neutralizing antibodies to KCiMist1 mice.

(B) Representative H&E staining on pancreatic tissue sections from KCiMist1 mice that received IL-17RA, IL-17A, and IL-17F neutralizing antibodies or PBS

injection at 7 weeks after Kras activation. Scale bars represent 80 mm for top panels, 40 mm for bottom panels.

(C andD)Quantification of fractional cross sectional area occupied by ADMs or PanINs (C) or occupied by fibroinflammatory stroma or normal tissue (D) in KCiMist1

that received PBS injections (black bars) versus KCiMist1 that received the combination of IL-17RA, IL-17A, and IL-17F neutralizing antibodies (gray bars). Results

are shown as mean ± SEM (n = 4–5) (*p < 0.05; **p < 0.01).

See also Figure S5.
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Figure 6. Oncogenic Kras Activates IL-17 Receptor A Expression in Early PanIN Epithelium

(A–D) Immunofluorescent detection of IL-17RA expression (red) on pancreatic epithelium in CiMist1 normal pancreas (A), CiMist1 pancreas with associated chronic

pancreatitis (B), KCiMist1 pancreas at 8 weeks following Kras activation (C), and KCiMist1 with chronic pancreatitis at 6 weeks following Kras activation (D). Slides

were colabeled with anti-E-cadherin antibody (green) and DAPI nuclear marker (blue). Red arrow indicates IL-17R staining in stroma. Scale bars represent 80 mm.

(legend continued on next page)
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analysis, multiple IL-17-related functional groups were found to

be downregulated in mPanIN epithelial cells harvested from

mice undergoing pharmacologic inhibition of IL-17 signaling,

confirming a direct in vivo effect of IL-17 on IL-17 receptor-

expressingmPanIN epithelial cells (Figure 7B). In examining indi-

vidual genes, we found that multiple genes previously shown to

be regulated by IL-17 in other systems were also significantly

downregulated in mPanIN epithelial cells isolated from IL-17

neutralized mice, including Cxcl5 (Liu et al., 2011), Lcn2 (Shen

et al., 2005), Muc5ac (Fujisawa et al., 2009), Rgs13 (Xie et al.,

2010), and Il6 (Ogura et al., 2008; Wang et al., 2009) (Figures

7C and 8A; Table S1). Among these,Muc5ac and Il6 have previ-

ously been associated with pancreatic tumor progression (Hoshi

et al., 2011; Lesina et al., 2011). Other genes associated with

pancreatic tumorigenesis but not previously known to be regu-

lated by IL-17 were also found to be downregulated in the

same cohort, includingMmp7 (Fukuda et al., 2011),Dclk1 (Bailey

et al., 2013), Muc4 (Chaturvedi et al., 2007; Singh et al., 2004),

Ctse (Cruz-Monserrate et al., 2012), Tff1 (Prasad et al., 2005),

andOnecut2 (Prévot et al., 2012) (Figure 7C; Table S1). Together,

these findings implicate a direct hematopoietic-to-epithelial

IL-17 signaling axis as a critical regulator of early pancreatic

neoplasia.

Based on the known role of IL-6/Stat3 signaling in pancreatic

neoplasia, we further investigated the association between loss

of IL-17 signaling and downregulated IL-6 expression. Using

qRT-PCR, we noted a 90% decrease in Il6 expression in

FACS-isolated mPanIN epithelial cells following even a single

week of neutralizing antibody-based IL-17 signaling blockade

(Figure 8A). A similar loss of Il6 expression was observed in

pancreatic tissue harvested from KCiMist1/IL-17KO BMmice (Fig-

ure 8B). Additional evidence that this decrease in IL-6 expression

was functionally significant was provided by examination of

Stat3 activation in mPanIN epithelial cells. Compared to mPanIN

lesions arising in KCiMist1/IL-17WTBMmice, less abundant PanIN

epithelial cells arising in KCiMist1/IL-17KO BM mice displayed a

marked reduction in phospho-Stat3 (Figure 8C), consistent

with loss of IL-17-dependent IL-6 expression.

DISCUSSION

The critical role of host immunity in regulating the early stages of

tumorigenesis is well established (Grivennikov et al., 2010), and

mounting evidence has demonstrated the frequent failure to

mount an effective antitumor immune response within the tumor

microenvironment. In pancreatic cancer, many alterations in the

microenvironment appear to occur as a direct response to onco-

genic Kras. Besides a cell-autonomous influence on pancreatic
(E) Quantification of IL-17RA expressing cells, expressed as percent of all E-cadhe

lesions (ADMs and PanINs) from 5 mice were quantified (*p < 0.05; **p < 0.01).

(F) Relative expression of IL-17RA quantified by TaqMan RT-PCR onGFP+ cells so

(n = 3).

(G) FACS-based quantification of cells expressing cell surface IL-17RA in com

8weeks postoncogenic Kras activation. The ‘‘CiMist1G negative control’’ panel dep

secondary antibody only; these cells were used to establish subsequently utiliz

nonviable cells.

(H) FACS-based quantification of cells expressing cell surface IL-17RA in combin

staining was used to exclude nonviable cells. For clarity, only theGFP+ fraction is d

See also Figure S6.
epithelial cells, epithelial Kras activation also induces dramatic

stromal remodeling and expansion, including the recruitment

of both proinflammatory and immunosuppressive cell popula-

tions. Prior work in the field has begun to elucidate the cellular

and soluble components mediating interactions between

neoplastic pancreatic epithelium and adjacent inflammatory

cells. Among these, GM-CSF and other soluble factors have

recently been implicated in tumor-induced expansion and

recruitment of immunosuppressive cell populations (Bayne

et al., 2012; Pylayeva-Gupta et al., 2012), while IL-8 and the

IL-6-Stat3 pathway contribute to the induction of a protumori-

genic inflammatory microenvironment (Fukuda et al., 2011;

Lesina et al., 2011; Sparmann and Bar-Sagi, 2004). In turn,

inflammatory cells and other stromal elements exert a potent

effect on Kras-activated epithelial cells, as the induction of

chronic pancreatitis accelerates the process of pancreatic

tumorigenesis in both mice and humans.

Our work now implicates a hematopoietic-to-epithelial IL-17

signaling axis as another important driver of PanIN initiation

and progression. Previous studies have demonstrated that

IL-17A can elicit protumorigenic effects through a variety of

mechanisms. In a spontaneous genetic model of prostate can-

cer, a prior report demonstrated that mice deficient of an IL-17

receptor expressed in prostatic tumorigenic epithelium had a

reduced incidence of invasive prostate adenocarcinoma,

indicating that IL-17 may promote the formation and growth of

prostate adenocarcinoma (Zhang et al., 2012). In a different

study using lymphoma, prostate and melanoma cell line xeno-

grafts, the absence of IL-17RA was associated with decreased

tumor growth (He et al., 2010). Similarly, depletion of IL-17 not

only decreased DMBA/TPA–induced inflammation and keratino-

cyte proliferation, but also delayed skin papilloma development

(Xiao et al., 2009).

Although these studies and our results suggest that proinflam-

matory TH17 cells accelerate early neoplasia, the effects of IL-17

on pancreatic cancer growth may be complex. Several trans-

plantable tumor models have reported an anti-tumorigenic role

(Garcia-Hernandez et al., 2010). With respect to pancreatic

cancer, it has been reported that murine pancreatic cancer cells

engineered to produce IL-6 display enhanced infiltration by TH17

cells and reduced growth rates following subcutaneous injection

into syngeneic mice, suggesting that TH17 cells may retard

pancreatic tumorigenesis (Gnerlich et al., 2010). However, func-

tional studies of infiltrating TH17 cells were not conducted in this

study, and their increased recruitment may simply reflect known

effects of IL-6. In addition, prior studies have correlated TH17 cell

infiltration and plasma IL-17A levels with poor prognosis in

pancreatic cancer patients (He et al., 2011; Vizio et al., 2012).
rin+ cells in ADM or PanIN lesions. Results are shown asmean ± SEM. Multiple

rted fromCiMist1 mice versus KCiMist-1 mice. Results are shown asmean ± SEM

bination with GFP as a marker of effective Cre-based recombination in mice

icts cells harvest fromCiMist1G control mice receiving no tamoxifen labeled with

ed GFP and IL-17RA gates. Propidium iodide staining was used to exclude

ation with GFP following oncogenic Kras activation and CP. Propidium iodide

epicted in the FACS plots. Results are expressed as percent of total GFP+ cells.
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Figure 7. KrasG12D-Induced Activation of IL-17RA Expression on PanIN Epithelial Cells Is Associated with In Vivo Functional Responses to

IL-17A

(A) Protocol followed for induction of KrasG12D expression in KCiMist1G mice followed by delayed treatment with IL-17 signaling neutralizing antibodies and

subsequent FACS-isolation of GFP+ PanIN epithelial cells for microarray.

(legend continued on next page)
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B

Figure 8. IL-17 Neutralization Is Associated with Decreased IL-6/p-Stat3 Epithelial Activation

(A) Relative expression of Il6 in GFP+ cells sorted from KCiMist1Gmice treated for 1 week with IL-17 signaling neutralizing antibodies. Results are shown asmean ±

SEM (n = 4) (*p < 0.05; **p < 0.01).

(B) Relative expression of Il6 in pancreatic whole tissue from KCiMist/IL-17WTBM versus KCiMist/IL-17WT mice. Results were presented as relative expression of Il6

(2-DCT). Results are shown as mean ± SEM (n = 4) (*p < 0.05).

(C) Immunohistochemistry for phosphorylated Stat3 (pStat3) in dysplastic pancreatic epithelium of KCiMist/IL-17WT BM versus KCiMist/IL-17KO mice (bottom

panel). Scale bars in top panels represent 80 mm. Bottom panels are showing detailed dysplastic epithelium from top panels.
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Nevertheless, it is clearly possible that IL-17 signaling may exert

opposing influences on pancreatic tumorigenesis at different

stages of the disease and in the context of variability in the
(B) Top Ingenuity canonical pathways enriched among genes that were significan

signaling neutralizing antibodies. As indicated on y axis, pathways are sorted ba

(C) Relative expression of representative genes quantified by TaqMan RT-PCR.

See also Table S1.
host immune response. It should also be noted that many of

our experiments were performed in the setting of concomitant

inflammation, potentially amplifying the role played by IL-17.
tly downregulated in GFP+ cells sorted from KCiMist1G mice treated with IL-17

sed on p value. Arrows indicate pathways directly related to IL-17 signaling.

Results are shown as mean ± SEM (n = 3) (*p < 0.05; **p < 0.01).
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However, the fact that RORgt-expressing cells are also found in

human PanIN, and the fact that oncogenic Kras can itself induce

inflammation (Clark et al., 2007), suggest that our observations

may indeed be broadly applicable.

When we analyzed IL-17-producing cell types associated

with early pancreatic neoplasia, we found that both TH17 cells

and gdT cells were specifically recruited to the pancreatic

preneoplastic microenvironment, with both cell types likely

contributing similar amounts of IL-17. In addition to the roles of

TH17 cells described above, IL-17-producing gdT cells have

been similarly implicated in chronic inflammatory conditions

and autoimmune pathologies (Braun et al., 2008; Ito et al.,

2009), as well as in tumor progression (Wakita et al., 2010). As

we have not specifically studied the individual roles of TH17 cells

and gdT cells during PanIN formation, it is important to recognize

that other hematopoietic cell types may in fact be important

sources of IL-17; in this regard, our FACS analyses indicate

that TH17 cells and gdT cells together account for approximately

75% of all CD45+, IL-17-expressing cells within the PanIN

microenvironment.

Regardless of its source, our results suggest that IL-17may, at

least in part, exert its proneoplastic effects by direct interaction

with IL-17 receptors on emerging PanIN epithelium, whose

expression is activated in a cell-autonomous manner by onco-

genic Kras. Using whole transcriptome analysis of FACS-

isolated PanIN epithelial cells, we observe dramatic changes in

previously defined IL-17-dependent gene expression signatures

following even short term loss of IL-17 signaling, confirming the

in vivo functionality of hematopoietic-to-epithelial IL-17 signaling

in early pancreatic neoplasia. Among the genes displaying IL-17-

dependent expression in IL-17 receptor-expressing PanIN

epithelial cells was IL-6, previously identified as a critical driver

of pancreatic neoplasia (Lesina et al., 2011). This decrease in

epithelial IL-6 expression observed following IL-17 inhibition

was associated with loss of phospho-Stat3 in PanIN epithelial

cells. Although these data are merely correlative, they imply

that IL-17 and IL-6-Stat3 signaling may cooperatively accelerate

PanIN initiation.

In addition to direct effects of IL-17 on PanIN epithelial cells,

we are aware of possible additional indirect effects. In this

regard, it has also been shown that IL-17A can promote tumor-

igenesis by signaling through IL-17RA present on mesen-

chymal or endothelial cells (Numasaki et al., 2004; Takahashi

et al., 2005), and this could represent an additional mechanism

explaining the protumorigenic effect of IL-17 in our model. A

recent report (Chung et al., 2013) further emphasizes the role

of IL-17 in modulating the tumor vasculature by directing the

effector function of MDSCs and in inducing fibroblast-mediated

secretion of proinflammatory cytokines. It has been previously

reported that IL-17 is required for the development of MDSCs

in tumor-bearing mice, as a defect in IL-17RA reduces the

number of tumor-infiltrating MDSCs (He et al., 2010). We

have observed a significant decrease in MDSCs in the PanIN

microenvironment after neutralizing IL-17 signaling, suggesting

that another mechanism for IL-17’s tumor-promoting effect

might be through the differentiation and/or recruitment

of MDSCs. As we have observed that IL-6 expression by

pancreas-infiltrating MDSCs is dramatically activated in both

KCiMist1 and KCiMist1 + CP mice (data not shown), this effect
634 Cancer Cell 25, 621–637, May 12, 2014 ª2014 Elsevier Inc.
may also contribute to the loss of IL-6-Stat3 signaling we

observe in the absence of IL-17.

In addition to studies in the mouse, we were also able to

confirm that human PanIN lesions exhibit upregulated expres-

sion of IL-17RA and that human ADMs as well as PanINs are

infiltrated by RORgt-expressing cells. Together, these studies

identify a therapeutically targetable signaling axis of potential

relevance in the treatment and/or prevention of pancreatic

cancer.

EXPERIMENTAL PROCEDURES

Detailed materials and methods are provided in Supplemental Experimental

Procedures.

Genetically Engineered Mice

All animal experiments were conducted in compliance with the National

Institute of Health guidelines for animal research and approved by the Institu-

tional Animal Care and Use Committee of the Johns Hopkins University. A

tamoxifen-inducible Mist1CreERT2/+ (CiMist1) driver strain was used to activate

a conditional lox-stop-lox-KrasG12D allele, as previously described (Habbe

et al., 2008). A cohort of KCiMist1 mice was also crossed onto a Cre-sensitive

double fluorescent reporter line, Rosa26mTmG (Muzumdar et al., 2007). The

resulting triple transgenic Mist1CreERT2/+;LSL-KrasG12D;R26mTmG (KCiMist1G)

mice enabled FACS-based isolation of KrasG12D-expressing cells by virtue of

simultaneous GFP activation.

Human Pancreatic Tissue Microarrays

Tissue microarrays containing wide range of normal pancreas, ADM and

PanIN were constructed using paraffin tissue blocks. This study was Johns

Hopkins University-Institutional Review Board (IRB) exempt as no protected

health information was used.

Dissociation of Adult Mouse Pancreas

Whole adult mouse pancreas was harvested and digested in 1 mg/ml

collagenase-P (Boehringer Mannheim) at 37�C for 30 min. Following multiple

washes with Hank’s balanced salt solution (HBSS) supplemented with 5%

FBS, collagenase-digested pancreatic tissue was filtered through a 600 mm

polypropylene mesh (Spectrum Laboratories) and spun down. The pellet

was then diluted in trypsin (0.05%) (Mediatech) and incubated at 37�C for

5 min. After multiple washes, cells were finally filtered through a 100 mm cell

strainer and directly resuspended in HBSS for flow cytometry.

Adenoviral Infection

Adenovirus (5 3 109 plaque-forming units [pfu] suspended in 50 ml) encoding

either GFP (Ad-EGFP), Luciferase (Ad-Luc), or IL-17A (Ad-IL-17A) (Schwarzen-

berger et al., 1998) were injected directly into multiple sites throughout the

pancreatic parenchyma. A cohort of mice was sacrificed 1 week following

adenoviral injection to assess for expression of encoded genes, using fluo-

rescent microscopy for detection of eGFP in mice injected with Ad-EGFP

and ELISA for detection of IL-17A in mice injected with either Ad-IL-17A or

Ad-Luc. A second cohort of mice was sacrificed at 7 weeks following Kras

activation.

Neutralizing Antibody Administration

Monoclonal neutralizing antibodies against IL-17RA, IL-17A, and IL-17F were

generously provided by Amgen (Sarkar et al., 2009; Stagg et al., 2011; Teng

et al., 2012).

Bone Marrow Preparation and Transplantation

Femurs and tibias were harvested from sacrificed donor mice and the bone

marrow was flushed with RPMI from bone canals into a Petri dish. The flushed

marrowwere then filtered through a 100 mmcells strainer. Cells were then spun

and resuspended in sterile PBS at a concentration of 10,000,000 cells/200 ul.

Recipient mice were irradiated with a total of 900 cGy and allowed to rest

for 6 hr. Mice were then injected retro-orbitally with bone marrow cells
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(10,000,000 cells/mouse) using an intradermal 26 G 3 3/8 syringe. Mice were

evaluated for effective bonemarrow chimerism at 8 weeks after the transplant.

RNA Isolation and Gene Array Analysis

RNA was immediately isolated from GFP+ sorted PanIN epithelial cells using

the QIAGEN RNeasy extraction kit. Gene array analysis was performed using

Mouse exon microarrays 1.0 ST (Affymetrix).

Statistical Analysis

Data are summarized as mean ± SEM. Data were analyzed using GraphPad

Prism (GraphPad Software). Comparisons between groups where data were

normally distributed were made with Student’s t test, and comparisons among

multiple groups or nonparametric data were made with ANOVA. Significance

was accepted at a p value < 0.05.

ACCESSION NUMBERS

Microarray data has been deposited at Gene Expression Omnibus (accession

number GSE54753).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.ccr.2014.03.014.
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