107 research outputs found

    Cell Death and Exosomes Regulation After Myocardial Infarction and Ischemia-Reperfusion

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the global population, accounting for about one-third of all deaths each year. Notably, with CVDs, myocardial damages result from myocardial infarction (MI) or cardiac arrhythmias caused by interrupted blood flow. Significantly, in the process of MI or myocardial ischemic-reperfusion (I/R) injury, both regulated and non-regulated cell death methods are involved. The critical factor for patients’ prognosis is the infarct area’s size, which determines the myocardial cells’ survival. Cell therapy for MI has been a research hotspot in recent years; however, exosomes secreted by cells have attracted much attention following shortcomings concerning immunogens. Exosomes are extracellular vesicles containing several biologically active substances such as lipids, nucleic acids, and proteins. New evidence suggests that exosomes play a crucial role in regulating cell death after MI as exosomes of various stem cells can participate in the cell damage process after MI. Hence, in the review herein, we focused on introducing various cell-derived exosomes to reduce cell death after MI by regulating the cell death pathway to understand myocardial repair mechanisms better and provide a reference for clinical treatment

    High Diversity of Cytospora Associated With Canker and Dieback of Rosaceae in China, With 10 New Species Described

    Get PDF
    Cytospora canker is a destructive disease of numerous hosts and causes serious economic losses with a worldwide distribution. Identification of Cytospora species is difficult due to insufficient phylogenetic understanding and overlapped morphological characteristics. In this study, we provide an assessment of 23 Cytospora spp., which covered nine genera of Rosaceae, and focus on 13 species associated with symptomatic branch or twig canker and dieback disease in China. Through morphological observation and multilocus phylogeny of internal transcribed spacer (ITS), large nuclear ribosomal RNA subunit (LSU), actin (act), RNA polymerase II subunit (rpb2), translation elongation factor 1-α (tef1-α), and beta-tubulin (tub2) gene regions, the results indicate 13 distinct lineages with high branch support. These include 10 new Cytospora species, i.e., C. cinnamomea, C. cotoneastricola, C. mali-spectabilis, C. ochracea, C. olivacea, C. pruni-mume, C. rosicola, C. sorbina, C. tibetensis, and C. xinjiangensis and three known taxa including Cytospora erumpens, C. leucostoma, and C. parasitica. This study provides an initial understanding of the taxonomy of Cytospora associated with canker and dieback disease of Rosaceae in China

    Z-source matrix rectifier

    Get PDF
    This paper presents a novel Z-source matrix rectifier(ZSMR). To overcome the inherent disadvantage that the voltage transfer ratio for traditional matrix rectifier cannot be more than 0.866, a Z-source network has been combined with the matrix rectifier. The proposed rectifier realizes a voltage-boost function and the Z-source network also serves as power storage and guarantees double filtration grade at the output of the rectifier. The open-circuit zero state is required to obtain the voltage-boost function and ensure the output angle of the current vector to be invariant to obtain the expected power factor. In addition, to widely extend the voltage transfer ratio of the proposed rectifier, this paper presents the switched-inductor matrix rectifier(SL-ZSMR) and tapped-inductor matrix rectifier(TL-ZSMR). The corresponding circuit topologies, control strategies and operating principles are introduced. Both simulation and experiment results are shown to verify the theoretical analysis

    Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time quantitative reverse transcription PCR (RT-qPCR) data needs to be normalized for its proper interpretation. Housekeeping genes are routinely employed for this purpose, but their expression level cannot be assumed to remain constant under all possible experimental conditions. Thus, a systematic validation of reference genes is required to ensure proper normalization. For soybean, only a small number of validated reference genes are available to date.</p> <p>Results</p> <p>A systematic comparison of 14 potential reference genes for soybean is presented. These included seven commonly used (<it>ACT2, ACT11, TUB4, TUA5, CYP, UBQ10, EF1b</it>) and seven new candidates (<it>SKIP16, MTP, PEPKR1, HDC, TIP41, UKN1, UKN2</it>). Expression stability was examined by RT-qPCR across 116 biological samples, representing tissues at various developmental stages, varied photoperiodic treatments, and a range of soybean cultivars. Expression of all 14 genes was variable to some extent, but that of <it>SKIP16, UKN1 </it>and <it>UKN2 </it>was overall the most stable. A combination of <it>ACT11, UKN1 </it>and <it>UKN2 </it>would be appropriate as a reference panel for normalizing gene expression data among different tissues, whereas the combination SKIP16, UKN1 and MTP was most suitable for developmental stages. <it>ACT11, TUA5 </it>and <it>TIP41 </it>were the most stably expressed when the photoperiod was altered, and <it>TIP41, UKN1 </it>and <it>UKN2 </it>when the light quality was changed. For six different cultivars in long day (LD) and short day (SD), their expression stability did not vary significantly with <it>ACT11, UKN2 </it>and <it>TUB4 </it>being the most stable genes. The relative gene expression level of <it>GmFTL3</it>, an ortholog of Arabidopsis <it>FT </it>(<it>FLOWERING LOCUS T</it>) was detected to validate the reference genes selected in this study.</p> <p>Conclusion</p> <p>None of the candidate reference genes was uniformly expressed across all experimental conditions, and the most suitable reference genes are conditional-, tissue-specific-, developmental-, and cultivar-dependent. Most of the new reference genes performed better than the conventional housekeeping genes. These results should guide the selection of reference genes for gene expression studies in soybean.</p

    Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea

    Get PDF
    RT-PCR detection of DGAT1 genes in transgenic yeast (INVSc1). The yeast actin was used as an internal control. 1, The yeast transformed with pYES2.0; 2–5, the yeast expressing AtDGAT1, GmDGAT1, BnDGAT1 and CeDGAT1, respectively. (DOCX 55 kb

    Identification and Characterization of an Efficient acyl-CoA:Diacylglycerol Acyltransferase 1 (\u3cem\u3eDGAT1\u3c/em\u3e) Gene from the Microalga \u3cem\u3eChlorella ellipsoidea\u3c/em\u3e

    Get PDF
    Background: Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. Results: A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8–37% and 12–18% and the average 1,000-seed weight by 9–15% and 6–29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25–50% in both transgenic Arabidopsis and B. napus. Conclusions: We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants

    Cytospora elaeagnicola sp. nov. Associated with Narrow-leaved Oleaster Canker Disease in China

    Get PDF
    Cytospora is a genus including important phytopathogens causing severe dieback and canker diseases distributed worldwide with a wide host range. However, identification of Cytospora species is difficult since the currently available DNA sequence data are insufficient. Aside the limited availability of ex-type sequence data, most of the genetic work is only based on the ITS region DNA marker which lacks the resolution to delineate to the species level in Cytospora. In this study, three fresh strains were isolated from the symptomatic branches of Elaeagnus angustifolia in Xinjiang Uygur Autonomous Region, China. Morphological observation and multi-locus phylogenetic analyses (ITS, LSU, ACT and RPB2) support these specimens are best accommodated as a distinct novel species of Cytospora. Cytospora elaeagnicola sp. nov. is introduced, having discoid, nearly flat, pycnidial conidiomata with hyaline, allantoid conidia, and differs from its relatives genetically and by host association

    TMSB4 Overexpression Enhances the Potency of Marrow Mesenchymal Stromal Cells for Myocardial Repair

    Get PDF
    ObjectiveThe actin-sequestering proteins, thymosin beta-4 (Tβ4) and hypoxia-inducible factor (HIF)-1α, are known to be associated with angiogenesis after myocardial infarction (MI). Herein, we aimed to identify the mechanism of HIF-1α induction by Tβ4 and investigate the effects of bone marrow mesenchymal stromal cells (BMMSCs) transfected with the Tβ4 gene (TMSB4) in a rat model of MI.MethodsRat BMMSCs were isolated, cultured, and transfected with the TMSB4 gene by using the lentivirus-mediated method. Rats with surgically induced MI were randomly divided into three groups (n = 9/group); after 1 week, the rats were injected at the heart infarcted border zone with TMSB4-overexpressed BMMSCs (BMMSC-TMSB4OE), wild-type BMMSCs that expressed normal levels of TMSB4 (BMMSC-TMSB4WT), or medium (MI). The fourth group of animals (n = 9) underwent all surgical procedures necessary for MI induction except for the ligation step (Sham). Four weeks after the injection, heart function was measured using transthoracic echocardiography. Infarct size was calculated by TTC staining, and collagen volume was measured by Masson staining. Angiogenesis in the infarcted heart area was evaluated by CD31 immunofluorescence histochemistry. In vitro experiments were carried out to observe the effect of exogenous Tβ4 on HIF-1α and explore the various possible mechanism(s).ResultsIn vivo experiments showed that vascular density 4 weeks after treatment was about twofold higher in BMMSC-TMSB4OE-treated animals than in BMMSC-TMSB4WT-treated animals (p &lt; 0.05). The cardiac function and infarct size significantly improved in both cell-treatment groups compared to controls. Notably, the cardiac function and infarct size were most prominent in BMMSC-TMSB4OE-treated animals (both p &lt; 0.05). HIF-1α and phosphorylated HIF-1α (p-HIF-1α) in vitro were significantly enhanced by exogenous Tβ4, which was nonetheless blocked by the factor-inhibiting HIF (FIH) promoter (YC-1). The expression of prolyl hydroxylase domain proteins (PHD) was decreased upon treatment with Tβ4 and further decreased with the combined treatment of Tβ4 and FG-4497 (a specific PHD inhibitor).ConclusionTMSB4-transfected BMMSCs might significantly improve recovery from myocardial ischemia and promote the generation of HIF-1α and p-HIF-1α via the AKT pathway, and inhibit the degradation of HIF-1α via the PHD and FIH pathways
    • …
    corecore