347 research outputs found

    Airport Noise Pollution: Is There a Solution in Sight?

    Get PDF
    Airport noise pollution is a widespread and growing problem in the United States. Traditionally the regulation of airport noise was left to state and local regulatory efforts as well as judicial actions brought under nuisance and inverse condemnation theories of liability. With the enactment of several pieces of federal legislation beginning in the 1970s, however, Congress has clarified its intent to preempt local control of airport noise. Local governments and airport proprietors have to comply with a complicated scheme of federal regulation and rely on insufficient funds to fully address the airport noise problem in their communities. This Comment suggests changes should be made to the regulatory framework governing the control of aircraft noise through reestablishment of the Office for Noise Abatement and Control within the Environmental Protection Agency, additional funds for noise mitigation projects, and research on the effects of aircraft noise, as well as a shift in the liability structure for noise violations

    Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects

    Get PDF
    Many neurodegenerative diseases exhibit axonal pathology, transport defects, and aberrant phosphorylation and aggregation of the microtubule binding protein tau. While mutant tau protein in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP17) causes aberrant microtubule binding and assembly of tau into filaments, the pathways leading to tau-mediated neurotoxicity in Alzheimer's disease and other neurodegenerative disorders in which tau protein is not genetically modified remain unknown. To test the hypothesis that axonal transport defects alone can cause pathological abnormalities in tau protein and neurodegeneration in the absence of mutant tau or amyloid β deposits, we induced transport defects by deletion of the kinesin light chain 1 (KLC1) subunit of the anterograde motor kinesin-1. We found that upon aging, early selective axonal transport defects in mice lacking the KLC1 protein (KLC1-/-) led to axonopathies with cytoskeletal disorganization and abnormal cargo accumulation. In addition, increased c-jun N-terminal stress kinase activation colocalized with aberrant tau in dystrophic axons. Surprisingly, swollen dystrophic axons exhibited abnormal tau hyperphosphorylation and accumulation. Thus, directly interfering with axonal transport is sufficient to activate stress kinase pathways initiating a biochemical cascade that drives normal tau protein into a pathological state found in a variety of neurodegenerative disorders including Alzheimer's disease.Fil: Falzone, Tomas Luis. Howard Hughes Medical Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Stokin, Gorazd B.. University Psychiatric Hospital; EsloveniaFil: Lillo, Concepción. University of California at San Diego; Estados UnidosFil: Rodrigues, Elizabeth M.. Howard Hughes Medical Institute; Estados UnidosFil: Westerman, Eileen L.. Howard Hughes Medical Institute; Estados UnidosFil: Williams, David S.. University of California at San Diego; Estados UnidosFil: Goldstein, Lawrence S. B.. Howard Hughes Medical Institute; Estados Unido

    GATE simulation for medical physics with genius Web portal

    Get PDF
    présenté par C. ThiamPCSV team of the LPC laboratory in Clermont-Ferrand is involved in the deployment of biomedical applications on the grid architecture. One of these applications deals with the deployment of GATE (Geant4 Application for Tomographic Emission) for medical physics application. The aim of the developments actually performed is to enable an application of the GATE platform in clinical routine. However, this perspective is only possible if the computing time and user time are highly reduced. The new grid architecture, developed within the framework of the European project Enabling Grid for E-sciencE (EGEE) is there to answer this requirement. The use of the grid resources must be transparent easy and rapid for the medical physicists. For this perpose, we adapted the GENIUS web portal in order to facilitate the GATE simulations planning on the grid. We will present a demonstration of the GENIUS portal which integrates all the functionalities of EGEE: to create, to submit and manage GATE jobs on the grid architecture. Our GATE activities for dosimetry application entered in to direct phase of evaluation by the cancer treatment center of Clermont Ferrand (Centre Jean perrin).A work station is currently available in this center to test the use of GATE application on the grid through GENIUS. This portal will allow in a long term to use GATE application in brachytherapy and radiotherapy treatment planning using medical data (medical images, DICOM, binary data dose calculation in the heterogeneous mediums) and to analyze the results obtained in visual form. Other functionalities are under development and will make possible to register medical data on grid storages elements and to manage them. However, these data must be anonymised before their recording on the grid. Their access via the GENIUS portal must be made safe and fast (compared simulation computing time). In order to be sure that the medical data are accessible for calculations, their replication on various storage element (SE) should be possible. The grid services give the possibility of managing this information in a free way and transparently. Operations of data handling and catalogues on the grid are ensured by the Replica Manager system which integrates all tools making it possible to manage data on the grid. The computing grid give promising results and meet a definite need: reach acceptable computing time for a future use of Monte Carlo simulations for treatment planning in brachytherapy and radiotherapy

    Cancer management during COVID-19 pandemic: is immune checkpoint inhibitors-based immunotherapy harmful or beneficial?

    Get PDF
    The coronavirus disease 2019 (COVID-19) is currently representing a global health threat especially for fragile individuals, such as cancer patients. It was demonstrated that cancer patients have an increased risk of developing a worse symptomatology upon severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) infection, often leading to hospitalization and intensive care. The consequences of this pandemic for oncology are really heavy, as the entire healthcare system got reorganized. Both oncologists and cancer patients are experiencing rescheduling of treatments and disruptions of appointments with a concurrent surge of fear and stress. In this review all the up-to-date findings, concerning the association between COVID-19 and cancer, are reported. A remaining very debated question regards the use of an innovative class of anti-cancer molecules, the immune checkpoint inhibitors (ICIs), given their modulating effects on the immune system. For that reason, administration of ICIs to cancer patients represents a question mark during this pandemic, as its correlation with COVID-19-associated risks is still under investigation. Based on the mechanisms of action of ICIs and the current evidence, we suggest that ICIs not only can be safely administered to cancer patients, but they might even be beneficial in COVID-19-positive cancer patients, by exerting an immune-stimulating action

    The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies

    Get PDF
    Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others

    Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI)

    Get PDF
    MEMRI offers the exciting possibility of tracing neuronal circuits in living animals by MRI. Here we use the power of mouse genetics and the simplicity of the visual system to test rigorously the parameters affecting Mn^(2+) uptake, transport and trans-synaptic tracing. By measuring electrical response to light before and after injection of Mn^(2+) into the eye, we determine the dose of Mn^(2+) with the least toxicity that can still be imaged by MR at 11.7 T. Using mice with genetic retinal blindness, we discover that electrical activity is not necessary for uptake and transport of Mn^(2+) in the optic nerve but is required for trans-synaptic transmission of this tracer to distal neurons in this pathway. Finally, using a kinesin light chain 1 knockout mouse, we find that conventional kinesin is a participant but not essential to neuronal transport of Mn^(2+) in the optic tract. This work provides a molecular and physiological framework for interpreting data acquired by MEMRI of circuitry in the brain

    Diagnostic and prognostic value of three micrornas in environmental asbestiform fibers-associated malignant mesothelioma

    Get PDF
    Fluoro-edenite (FE) is an asbestiform fiber identified in Biancavilla (Sicily, Italy). Environmental exposure to FE has been associated with a higher incidence of malignant mesothelioma (MM). The present study aimed to validate the predicted diagnostic significance of hsa-miR-323a-3p, hsa-miR-101-3p, and hsa-miR-20b-5p on a subset of MM patients exposed to FE and matched with healthy controls. For this purpose, MM tissues vs. nonmalignant pleura tissues were analyzed through droplet digital PCR (ddPCR) to evaluate differences in the expression levels of the selected miRNAs and their MM diagnostic potential. In addition, further computational analysis has been performed to establish the correlation of these miRNAs with the available online asbestos exposure data and clinic-pathological parameters to verify the potential role of these miRNAs as prognostic tools. ddPCR results showed that the three analyzed miRNAs were significantly down-regulated in MM cases vs. controls. Receiver operating characteristic (ROC) analysis revealed high specificity and sensitivity rates for both hsa-miR-323a-3p and hsa-miR-20b-5p, which thus acquire a diagnostic value for MM. In silico results showed a potential prognostic role of hsa-miR-101-3p due to a significant association of its higher expression and increased overall survival (OS) of MM patients

    Teens, Tweets, and Tanning Beds: Rethinking the Use of Social Media for Skin Cancer Prevention

    Get PDF
    The incidence of skin cancer is rising in the U.S., and melanoma, the deadliest form, is increasing disproportionately among young white women. Indoor tanning is a modifiable risk factor for all skin cancers and continues to be used at the highest rates in young white women. Adolescents and young adults report personal appearance-based reasons for using indoor tanning. Previous research has explored the influences on tanning bed use, including individual factors as well as relationships with peers, family, schools, media influences, legislation, and societal beauty norms. Adolescents and young adults also have high rates of social media usage, and research is emerging on how best to utilize these platforms for prevention. Social media has the potential to be a cost-effective way to reach large numbers of young people and target messages at characteristics of specific audiences. Recent prevention efforts have shown that comprehensive prevention campaigns that include technology and social media are promising in reducing rates of indoor tanning among young adults. This review examines the literature on psychosocial influences on indoor tanning among adolescents and young adults, and highlights ways in which technology and social media can be used for prevention efforts

    Current molecular and clinical insights into uveal melanoma (Review)

    Get PDF
    Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90.95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets
    corecore