93 research outputs found

    Measurements and calibration of the stripline BPM for the ELI-NP facility with the stretched wire method

    Get PDF
    A methodology has been developed to perform electrical characterization of the stripline BPMs for the future Gamma Beam System of ELI Nuclear Physics facility in Romania. Several prototype units are extensively benchmarked and the results are presented in this paper. The BPM sensitivity function is determined using a uniquely designed motorized test bench with a stretched wire to measure the BPM response map. Here, the BPM feedthroughs are connected to Libera Brilliance electronics and the wire is fed by continuous wave signal, while the two software-controlled motors provide horizontal and vertical motion of the BPM around the wire. The electrical offset is obtained using S-parameter measurements with a Network Analyzer (via the “Lambertson” method) and is referenced to the mechanical offse

    Thermal simulations for optical transition radiation screen for Eli-NP compton gamma source

    Get PDF
    The ELI-NP GBS (Extreme Light Infrastructure-Nuclear Physics Gamma Beam Source) is a high brightness elec-tron LINAC that is being built in Romania. The goal for this facility is to provide high luminosity gamma beam through Compton Backscattering. A train of 32 bunches at 100Hz with a nominal charge of 250pC is accelerated up to 740 MeV. Two interaction points with an IR Laser beam produces the gamma beam at different energies. In order to measure the electron beam spot size and the beam proper-ties along the train, the OTR screens must sustain the ther-mal and mechanical stress due to the energy deposited by the bunches. This paper is an ANSYS study of the issues due to the high quantity of energy transferred to the OTR screen. They will be shown different analysis, steady-state and thermal transient analysis, where the input loads will be the internal heat generation equivalent to the average power, deposited by the ELI-GBS beam in 512 ns, that is the train duration. Each analyses will be followed by the structural analysis to investigate the performance of the OTR materi

    Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation

    Get PDF
    Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress. Assembly of NLRP3/ASC inflammasome triggers pro-caspase-1 activation, thus, resulting in IL-1β and IL-18 maturation. However, an aberrant activation of inflammasome system has been implicated in several human diseases. Our aim was to investigate the possible role of inflammasome in the chronic subclinical inflammatory condition typical of RTT, by analyzing this complex in basal and lipopolysaccharide (LPS)+ATP-stimulated primary fibroblasts, as well as in serum from RTT patients and healthy volunteers. RTT cells showed increased levels of nuclear p65 and ASC proteins, pro-IL-1β mRNA, and NLRP3/ASC interaction in basal condition, without any further response upon the LPS + ATP stimuli. Moreover, augmented levels of circulating ASC and IL-18 proteins were found in serum of RTT patients, which are likely able to amplify the inflammatory response. Taken together, our findings suggest that RTT patients exhibited a challenged inflammasome machinery at cellular and systemic level, which may contribute to the subclinical inflammatory state feedback observed in this pathology

    Delivery status of the ELI-NP gamma beam system

    Get PDF
    International audienceThe ELI-NP GBS is a high intensity and monochromatic gamma source under construction in Magurele (Romania). The design and construction of the Gamma Beam System complex as well as the integration of the technical plants and the commissioning of the overall facility, was awarded to the Eurogammas Consortium in March 2014. The delivery of the facility has been planned in for 4 stages and the first one was fulfilled in October 31st 2015. The engineering aspects related to the delivery stage 1 are presented

    High power test results of the Eli-NP S-Band gun fabricated with the new clamping technology without brazing

    Get PDF
    High gradient RF photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, thus satisfying the tight demands of free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. A new fabrication technique for this type of structures has been recently developed and implemented at the Laboratories of Frascati of the National Institute of Nuclear Physics (INFN-LNF, Italy). It is based on the use of special RF-vacuum gaskets, that allow a brazing-free realization process. The S-band gun of the ELI-NP gamma beam system (GBS) has been fabricated with this new technique. It operates at 100 Hz with 120 MV/m cathode peak field and 1.5 ÎĽs long RF pulses to house the 32 bunches necessary to reach the target gamma flux. High gradient tests, performed at full power and full repetition rate, have shown extremely good performances of the structure in terms of breakdown rate. In the paper, we report and discuss all the experimental results, the electromagnetic design and the mechanical realization processes

    Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3

    Get PDF
    The study of extremophilicphages may reveal new phage families as well as different mechanisms of infection, propagation and lysis to those found in phages from temperate environments. We describe a novel siphovirus, GVE3, that infects the thermophileGeobacillusthermoglucosidasius. The genome size is 141298 bp(G+C 29.6%) making it the largest Geobacillusspp infecting phage known.GVE3 appears to be most closely related to the recently described Bacillus anthracis phage vB_BanS_Tsamsa, rather thanGeobacillus infecting phages described thus far.Tetranucleotide usage deviation analysis supports this relationship, showing that the GVE3 genome sequence correlates best with B. anthracis and Bacillus cereus genome sequences, rather than Geobacillusspp genome sequences.National Research Foundation (NRF) of South Africahttp://link.springer.com/journal/7052016-09-30hb201

    Endothelial cells from umbilical cord of women affected by gestational diabetes: A suitable in vitro model to study mechanisms of early vascular senescence in diabetes

    Get PDF
    Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an “endothelial hyperglycemic memory” model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo

    Technology developments of ELI-NP gamma beam system

    Get PDF
    The ELI-NP gamma beam system (GBS) is a linac based gamma-source in construction in Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy, from 0.2 to 19.5 MeV, and with intensity and brilliance beyond the state of the art, will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and an intense laser pulse at 100 Hz repetition rate. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation and laser recirculation at the interaction point. In this paper, the main technological developments carried out by the EuroGammaS consortium for the generation of the ELI-NP gamma beam will be described with a special emphasis on the electron linac technology, such as: RF-gun and C-band accelerating structures design fabrication and tests; low level RF (LLRF) and synchronization systems specifications and development. Finally, the laser recirculation apparatus design is briefly described and first results reported
    • …
    corecore