11 research outputs found

    Supplementary Material for: Gene Expression Analysis and Urinary Biomarker Assays Reveal Activation of Tubulointerstitial Injury Pathways in a Rodent Model of Chronic Proteinuria (Doxorubicin Nephropathy)

    No full text
    <strong><em>Background:</em></strong> Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies. <b><i>Methods:</i></b> To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry. <b><i>Results:</i></b> Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity

    Characterization of the methylation-sensitive promoter of the imprinted ZAC gene supports its role in transient neonatal diabetes mellitus

    No full text
    ZAC is a recently isolated zinc finger protein that induces apoptosis and cell cycle arrest. The corresponding gene is imprinted maternally through an unknown mechanism and maps to 6q24-q25, within the minimal interval harboring the gene responsible for transient neonatal diabetes mellitus (TNDM) and a tumor suppressor gene involved in breast cancer. Because of its functional properties, imprinting status, and expression pattern in mammary cell lines and tumors, ZAC is the best candidate so far for both disease conditions. In the present work, we delineated ZAC genomic organization and mapped its transcriptional start site. It is noteworthy that the ZAC promoter localized to the CpG island harboring the methylation imprint associated with TNDM and methylation of this promoter silenced its activity. These data indicate that the methylation mark may have a direct effect on the silencing of the ZAC imprinted allele. Our findings further strengthen the hypothesis that ZAC is the gene responsible for TNDM and suggest a novel mechanism for ZAC inactivation in breast tumors

    The Role of Schwann Cell in Nerve Regeneration

    No full text
    corecore