285 research outputs found

    Mass measurements near the rr-process path using the Canadian Penning Trap mass spectrometer

    Full text link
    The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of δm/m=107\delta m/m= 10^{-7} using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a 252^{252}Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical rr process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in β\beta-endpoint measurements. Differences in mass excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well as systematic disagreement with various mass models.Comment: 15 pages, 16 figures. v2 updated, published in Physical Review

    The ethics of uncertainty for data subjects

    Get PDF
    Modern health data practices come with many practical uncertainties. In this paper, I argue that data subjects’ trust in the institutions and organizations that control their data, and their ability to know their own moral obligations in relation to their data, are undermined by significant uncertainties regarding the what, how, and who of mass data collection and analysis. I conclude by considering how proposals for managing situations of high uncertainty might be applied to this problem. These emphasize increasing organizational flexibility, knowledge, and capacity, and reducing hazard

    12^{12}C+16^{16}O sub-barrier radiative capture cross-section measurements

    Get PDF
    We have performed a heavy ion radiative capture reaction between two light heavy ions, 12^{12}C and 16^{16}O, leading to 28^{28}Si. The present experiment has been performed below Coulomb barrier energies in order to reduce the phase space and to try to shed light on structural effects. Obtained γ\gamma-spectra display a previously unobserved strong feeding of intermediate states around 11 MeV at these energies. This new decay branch is not fully reproduced by statistical nor semi-statistical decay scenarii and may imply structural effects. Radiative capture cross-sections are extracted from the data.Comment: 4 pages, 7 figures, to appear as proceedings of FUSION 2011 conference at St-Malo, Franc

    β-delayed neutron spectroscopy using trapped radioactive ions

    Get PDF
    A novel technique for β-delayed neutron spectroscopy has been demonstrated using trapped ions. The neutron-energy spectrum is reconstructed by measuring the time of flight of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection, such as backgrounds from scattered neutrons and γ rays and complicated detector-response functions. I+137 ions delivered from a Cf252 source were confined in a linear Paul trap surrounded by radiation detectors, and the β-delayed neutron-energy spectrum and branching ratio were determined by detecting the β- and recoil ions in coincidence. Systematic effects were explored by determining the branching ratio three ways. Improvements to achieve higher detection efficiency, better energy resolution, and a lower neutron-energy threshold are proposed. © 2013 American Physical Society

    Direct measurement of resonance strengths in S 34 (α,γ) Ar 38 at astrophysically relevant energies using the DRAGON recoil separator

    Get PDF
    Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on S34 has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94-3.42MeV at T=2.2GK). Further, there are several states in Ar38 within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of S34 ions on a windowless He4 gas target. Prompt γ emissions of de-exciting Ar38 recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values using the STARLIB rate calculator agrees with the NON-SMOKER statistical model calculation as well as the REACLIB and STARLIB library rates at explosive and nonexplosive oxygen-burning temperatures (T=3-4GK and T=1.5-2.7GK, respectively)

    Cross section measurements of the 3He(alpha, gamma) 7Be reaction using DRAGON at TRIUMF.

    Get PDF
    4 pags., 2 figs. -- Nuclear Physics in Astrophysics V 3–8 April 2011, Eilat, IsraelWe present our initial efforts with the DRAGON separator at TRIUMF facility towards obtaining the energy dependence of the astrophysical S-factor for 3He(¿, ¿)7Be reaction in the energy range of Ecm = 2 to 3 MeV that was recommended by the recent evaluations. A comparison between the existing data and our new complementary Madrid data, together with the recent theoretical calculations, is also given in the context of our ongoing work.This work has been supported by the UK STFC

    Patient and family involvement in adult critical and intensive care settings : a scoping review

    Get PDF
    BACKGROUND: Despite international bodies calling for increased patient and family involvement, these concepts remain poorly defined within literature on critical and intensive care settings. OBJECTIVE: This scoping review investigates the extent and range of literature on patient and family involvement in critical and intensive care settings. Methodological and empirical gaps are identified, and a future agenda for research into optimizing patient and family involvement is outlined. METHODS: Searches of MEDLINE, CINAHL, Social Work Abstracts and PsycINFO were conducted. English‐language articles published between 2003 and 2014 were retrieved. Articles were included if the studies were undertaken in an intensive care or critical care setting, addressed the topic of patient and family involvement, included a sample of adult critical care patients, their families and/or critical care providers. Two reviewers extracted and charted data and analysed findings using qualitative content analysis. FINDINGS: A total of 892 articles were screened, 124 were eligible for analysis, including 61 quantitative, 61 qualitative and 2 mixed‐methods studies. There was a significant gap in research on patient involvement in the intensive care unit. The analysis identified five different components of family and patient involvement: (i) presence, (ii) having needs met/being supported, (iii) communication, (iv) decision making and (v) contributing to care. CONCLUSION: Three research gaps were identified that require addressing: (i) the scope, extent and nature of patient involvement in intensive care settings; (ii) the broader socio‐cultural processes that shape patient and family involvement; and (iii) the bidirectional implications between patient/family involvement and interprofessional teamwork

    Tensor interaction limit derived from the α-β-ν̄ correlation in trapped Li8 ions

    Get PDF
    A measurement of the α-β-ν̄ angular correlation in the Gamow-Teller decay Li8→Be*8+ν̄+β, Be*8→ α+α has been performed using ions confined in a linear Paul trap surrounded by silicon detectors. The energy difference spectrum of the α particles emitted along and opposite the direction of the β particle is consistent with the standard model prediction and places a limit of 3.1% (95.5% confidence level) on any tensor contribution to the decay. From this result, the amplitude of any tensor component CT relative to that of the dominant axial-vector component CA of the electroweak interaction is limited to |CT/CA|\u3c0.18 (95.5% confidence level). This experimental approach is facilitated by several favorable features of the Li8 β decay and has different systematic effects than the previous β-ν̄ correlation results for a pure Gamow-Teller transition obtained from studying He6 β decay. © 2013 American Physical Society
    corecore