7 research outputs found

    On the operando structure of ruthenium oxides during the oxygen evolution reaction in acidic media

    Get PDF
    In the search for rational design strategies for oxygenevolutionreaction (OER) catalysts, linking the catalyst structure to activityand stability is key. However, highly active catalysts such as IrO x and RuO x undergostructural changes under OER conditions, and hence, structure-activity-stabilityrelationships need to take into account the operando structure ofthe catalyst. Under the highly anodic conditions of the oxygen evolutionreaction (OER), electrocatalysts are often converted into an activeform. Here, we studied this activation for amorphous and crystallineruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemicalscanning electron microscopy (EC-SEM). We tracked the evolution ofsurface oxygen species in ruthenium oxides while in parallel mappingthe oxidation state of the Ru atoms to draw a complete picture ofthe oxidation events that lead to the OER active structure. Our datashow that a large fraction of the OH groups in the oxide are deprotonatedunder OER conditions, leading to a highly oxidized active material.The oxidation is centered not only on the Ru atoms but also on theoxygen lattice. This oxygen lattice activation is particularly strongfor amorphous RuO x . We propose that thisproperty is key for the high activity and low stability observed foramorphous ruthenium oxide.Catalysis and Surface Chemistr

    Operando Structure Activity Stability Relationship of Iridium Oxides during the Oxygen Evolution Reaction

    Get PDF
    Creating active and stable electrodes is an essential step toward efficient and durable electrolyzers. To achieve this goal, understanding what aspects of the electrode structure dictate activity and catalyst dissolution is key. Here, we investigate these aspects by studying trends in the activity, stability, and operando structure of iridium oxides during the oxygen evolution reaction. Using operando X-ray photoelectron and X-ray absorption spectroscopy, we determined the near-surface structure of oxides ranging from amorphous to crystalline during the reaction. We show that applying oxygen evolution potentials universally yields deprotonated μ2-O moieties and a μ1-O/μ1-OH mixture, with universal deprotonation energetics but in different amounts. This quantitative difference mainly results from variations in deprotonation depth: surface deprotonation for crystalline IrO2 versus near-surface deprotonation for semicrystalline and amorphous IrOx. We argue that both surface deprotonation and subsurface deprotonation modify the barrier for the oxygen evolution and Ir dissolution reactions, thus playing an important role in catalyst performance

    Investigation of electrocatalysts produced by a novel thermal spray deposition method

    Get PDF
    Common methods to produce supported catalysts include impregnation, precipitation, and thermal spray techniques. Supported electrocatalysts produced by a novel method for thermal spray deposition were investigated with respect to their structural properties, elemental composition, and electrochemical performance. This was done using electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Various shapes and sizes of catalyst particles were found. The materials exhibit different activity towards oxidation and reduction of Fe. The results show that this preparation method enables the selection of particle coverage as well as size and shape of the catalyst material. Due to the great variability of support and catalyst materials accessible with this technique, this approach is a useful extension to other preparation methods for electrocatalysts

    Graphene Capped Liquid Thin Films for Electrochemical Operando X ray Spectroscopy and Scanning Electron Microscopy

    Get PDF
    Electrochemistry is a promising building block for the global transition to a sustainable energy market. Particularly the electroreduction of CO2 and the electrolysis of water might be strategic elements for chemical energy conversion. The reactions of interest are inner-sphere reactions, which occur on the surface of the electrode, and the biased interface between the electrode surface and the electrolyte is of central importance to the reactivity of an electrode. However, a potential-dependent observation of this buried interface is challenging, which slows the development of catalyst materials. Here we describe a sample architecture using a graphene blanket that allows surface sensitive studies of biased electrochemical interfaces. At the examples of near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and environmental scanning electron microscopy (ESEM), we show that the combination of a graphene blanket and a permeable membrane leads to the formation of a liquid thin film between them. This liquid thin film is stable against a water partial pressure below 1 mbar. These properties of the sample assembly extend the study of solid–liquid interfaces to highly surface sensitive techniques, such as electron spectroscopy/microscopy. In fact, photoelectrons with an effective attenuation length of only 10 Å can be detected, which is close to the absolute minimum possible in aqueous solutions. The in-situ cells and the sample preparation necessary to employ our method are comparatively simple. Transferring this approach to other surface sensitive measurement techniques should therefore be straightforward. We see our approach as a starting point for more studies on electrochemical interfaces and surface processes under applied potential. Such studies would be of high value for the rational design of electrocatalysts

    A comparative study of electrochemical cells for in situ X ray spectroscopies in the soft and tender X ray range

    Get PDF
    In situ X ray spectroscopies offer a powerful way to understand the electronic structure of the electrode electrolyte interface under operating conditions. However, most X ray techniques require vacuum, making it necessary to design spectro electrochemical cells with a delicate interface to the wet electrochemical environment. The design of the cell often dictates what measurements can be done and which electrochemical processes can be studied. Hence, it is important to pick the right spectro electrochemical cell for the process of interest. To facilitate this choice, and to highlight the challenges in cell design, we critically review four recent, successful cell designs. Using several case studies, we investigate the opportunities and limitations that arise in practical experiment

    The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrOx electrocatalysts

    No full text
    Photoelectron spectroscopy offers detailed information about the electronic structure and chemical composition of surfaces, owing to the short distance that the photoelectrons can escape from a dense medium. Unfortunately, photoelectron based spectroscopies are not directly compatible with the liquids required to investigate electrochemical processes, especially in the soft X-ray regime. To overcome this issue, different approaches based on photoelectron spectroscopy have been developed in our group over the last few years. The performance and the degree of information provided by these approaches are compared with those of the well established bulk sensitive spectroscopic approach of total fluorescence yield detection, where the surface information gained from this approach is enhanced using samples with large surface to bulk ratios. The operation of these approaches is exemplified and compared using the oxygen evolution reaction on IrOx catalysts. We found that all the approaches, if properly applied, provide similar information about surface oxygen speciation. However, using resonant photoemission spectroscopy, we were able to prove that speciation is more involved and complex than previously thought during the oxygen evolution reaction on IrOx based electrocatalysts. We found that the electrified solid-liquid interface is composed of different oxygen species, where the terminal oxygen atoms on iridium are the active species, yielding the formation of peroxo species and, finally, dioxygen as the reaction product. Thus, the oxygen-oxygen bond formation is dominated by peroxo species formation along the reaction pathway. Furthermore, the methodologies discussed here open up opportunities to investigate electrified solid-liquid interfaces in a multitude of electrochemical processes with unprecedented speciation capabilities, which are not accessible by one-dimensional X-ray spectroscopies.Catalysis and Surface Chemistr

    Key role of chemistry versus bias in electrocatalytic oxygen evolution

    No full text
    The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels. Electrocatalysts accelerate the reaction by facilitating the required electron transfer, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler–Volmer theory, which focuses on electron transfer, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium or steady-state assumptions. However, the charging of catalyst surfaces under bias also affects bond formation and rupture, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance
    corecore