821 research outputs found
Quantum-dot-spin single-photon interface
Using background-free detection of spin-state-dependent resonance
fluorescence from a single-electron charged quantum dot with an efficiency of
0:1%, we realize a single spin-photon interface where the detection of a
scattered photon with 300 picosecond time resolution projects the quantum dot
spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of
resonantly scattered photons reveals information about electron spin dynamics.
High-fidelity fast spin-state initialization heralded by a single photon
enables the realization of quantum information processing tasks such as
non-deterministic distant spin entanglement. Given that we could suppress the
measurement back-action to well below the natural spin-flip rate, realization
of a quantum non-demolition measurement of a single spin could be achieved by
increasing the fluorescence collection efficiency by a factor exceeding 20
using a photonic nanostructure
Quantum Teleportation from a Propagating Photon to a Solid-State Spin Qubit
The realization of a quantum interface between a propagating photon used for
transmission of quantum information, and a stationary qubit used for storage
and manipulation, has long been an outstanding goal in quantum information
science. A method for implementing such an interface between dissimilar qubits
is quantum teleportation, which has attracted considerable interest not only as
a versatile quantum-state-transfer method but also as a quantum computational
primitive. Here, we experimentally demonstrate transfer of quantum information
carried by a photonic qubit to a quantum dot spin qubit using quantum
teleportation. In our experiment, a single photon in a superposition state of
two colors -- a photonic qubit is generated using selective resonant excitation
of a neutral quantum dot. We achieve an unprecedented degree of
indistinguishability of single photons from different quantum dots by using
local electric and magnetic field control. To teleport a photonic qubit, we
generate an entangled spin-photon state in a second quantum dot located 5
meters away from the first and interfere the photons from the two dots in a
Hong-Ou-Mandel set-up. A coincidence detection at the output of the
interferometer heralds successful teleportation, which we verify by measuring
the resulting spin state after its coherence time is prolonged by an optical
spin-echo pulse sequence. The demonstration of successful inter-conversion of
photonic and semiconductor spin qubits constitute a major step towards the
realization of on-chip quantum networks based on semiconductor nano-structures.Comment: 12 pages, 3 figures, Comments welcom
Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics
We present an inverted GaAs 2D electron gas with self-assembled InAs quantum
dots in close proximity, with the goal of combining quantum transport with
quantum optics experiments. We have grown and characterized several wafers --
using transport, AFM and optics -- finding narrow-linewidth optical dots and
high-mobility, single subband 2D gases. Despite being buried 500 nm below the
surface, the dots are clearly visible on AFM scans, allowing precise
localization and paving the way towards a hybrid quantum system integrating
optical dots with surface gate-defined nanostructures in the 2D gas.Comment: 4 pages, 5 figures (color
Imaging and manipulating electrons in a 1D quantum dot with Coulomb blockade microscopy
Motivated by the recent experiments by the Westervelt group using a mobile
tip to probe the electronic state of quantum dots formed on a segmented
nanowire, we study the shifts in Coulomb blockade peak positions as a function
of the spatial variation of the tip potential, which can be termed "Coulomb
blockade microscopy". We show that if the tip can be brought sufficiently close
to the nanowire, one can distinguish a high density electronic liquid state
from a Wigner crystal state by microscopy with a weak tip potential. In the
opposite limit of a strongly negative tip potential, the potential depletes the
electronic density under it and divides the quantum wire into two partitions.
There the tip can push individual electrons from one partition to the other,
and the Coulomb blockade micrograph can clearly track such transitions. We show
that this phenomenon can be used to qualitatively estimate the relative
importance of the electron interaction compared to one particle potential and
kinetic energies. Finally, we propose that a weak tip Coulomb blockade
micrograph focusing on the transition between electron number N=0 and N=1
states may be used to experimentally map the one-particle potential landscape
produced by impurities and inhomogeneities.Comment: 4 pages 7 figure
The effect of heavy metal on Chlorella vulgaris, Scenedesmus obliquus and Anabaena flos-aquae
In this survey two species of chlorophyta (Chlorella vulgaris and Scenedesmus obliquus) and one species of blue-green algae (Anabaena flos- aquae) were exposed with heavy metal (zinc) under lab condition (temp. 25±2°C, light 3500±350 lux) for 96 hours. After this time, these species were counted with hemocytometer and based on probit analysis method and was determined ECIO, EC50 and EC90. Amount of EC50 for C. vulgaris, S. obliquus and A. flos-aquae were 0.134,0.047 and 0.093 mg/lit, respectively and this subject was distincted that S obliquus has more endurance than other species. Max value of zinc for these species (C. vulgaris, S. obiquus and A. flos-aquae ) were 0.0134, 0.0047 and 0.0093 mg/l respectively. Regression coefficient was 92-98 percent between concentration logarithm of zinc and decrease of these species density
Coherent spin state transfer via Heisenberg exchange
Quantum information science has the potential to revolutionize modern
technology by providing resource-efficient approaches to computing,
communication, and sensing. Although the physical qubits in a realistic quantum
device will inevitably suffer errors, quantum error correction creates a path
to fault-tolerant quantum information processing. Quantum error correction,
however, requires that individual qubits can interact with many other qubits in
the processor. Engineering this high connectivity can pose a challenge for
platforms like electron spin qubits that naturally favor linear arrays. Here,
we present an experimental demonstration of the transmission of electron spin
states via Heisenberg exchange in an array of spin qubits. We transfer both
single-spin and entangled states back and forth in a quadruple quantum-dot
array without moving any electrons. Because it is scalable to large numbers of
qubits, state transfer through Heisenberg exchange will be especially useful
for multi-qubit gates and error-correction in spin-based quantum computers.Comment: 14 pages, 10 figure
A capacitance spectroscopy-based platform for realizing gate-defined electronic lattices
Electrostatic confinement in semiconductors provides a flexible platform for
the emulation of interacting electrons in a two-dimensional lattice, including
in the presence of gauge fields. This combination offers the potential to
realize a wide host of quantum phases. Here we present a measurement and
fabrication scheme that builds on capacitance spectroscopy and allows for the
independent control of density and periodic potential strength imposed on a
two-dimensional electron gas. We characterize disorder levels and
(in)homogeneity and develop and optimize different gating strategies at length
scales where interactions are expected to be strong. A continuation of these
ideas might see to fruition the emulation of interaction-driven Mott
transitions or Hofstadter butterfly physics
Single-Atom Gating of Quantum State Superpositions
The ultimate miniaturization of electronic devices will likely require local
and coherent control of single electronic wavefunctions. Wavefunctions exist
within both physical real space and an abstract state space with a simple
geometric interpretation: this state space--or Hilbert space--is spanned by
mutually orthogonal state vectors corresponding to the quantized degrees of
freedom of the real-space system. Measurement of superpositions is akin to
accessing the direction of a vector in Hilbert space, determining an angle of
rotation equivalent to quantum phase. Here we show that an individual atom
inside a designed quantum corral can control this angle, producing arbitrary
coherent superpositions of spatial quantum states. Using scanning tunnelling
microscopy and nanostructures assembled atom-by-atom we demonstrate how single
spins and quantum mirages can be harnessed to image the superposition of two
electronic states. We also present a straightforward method to determine the
atom path enacting phase rotations between any desired state vectors. A single
atom thus becomes a real space handle for an abstract Hilbert space, providing
a simple technique for coherent quantum state manipulation at the spatial limit
of condensed matter.Comment: Published online 6 April 2008 in Nature Physics; 17 page manuscript
(including 4 figures) + 3 page supplement (including 2 figures);
supplementary movies available at http://mota.stanford.ed
- …
