63 research outputs found

    Lipid Raft-Mediated Regulation of G-Protein Coupled Receptor Signaling by Ligands which Influence Receptor Dimerization: A Computational Study

    Get PDF
    G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors on the cell surface. In addition, microdomains on the cell membrane termed lipid rafts have been shown to play a role in GPCR localization. Using a combination of stochastic (Monte Carlo) and deterministic modeling, we propose a novel mechanism for lipid raft partitioning of GPCRs based on reversible dimerization of receptors and then demonstrate that such localization can affect GPCR signaling. Modeling results are consistent with a variety of experimental data indicating that lipid rafts have a role in amplification or attenuation of G-protein signaling. Thus our work suggests a new mechanism by which dimerization-inducing or inhibiting characteristics of ligands can influence GPCR signaling by controlling receptor organization on the cell membrane

    CREB Targets Define the Gene Expression Signature of Malignancies Having Reduced Levels of the Tumor Suppressor Tristetraprolin

    Get PDF
    The RNA-binding protein Tristetraprolin (TTP, ZFP36) functions as a tumor suppressor that impairs the development and disables the maintenance of MYC-driven lymphoma. In addition, other human cancers expressed reduced levels of TTP, suggesting that it may function as a tumor suppressor in several malignancies. To identify genes that may be associated with TTP tumor suppressor functions in human cancer, we analyzed The Cancer Genome Atlas (TCGA) breast cancer, lung adenocarcinoma, lung squamous cell carcinoma, and colon adenocarcinoma datasets. These analyses defined a signature of 50 genes differentially regulated between high and low TTP-expressing tumors. Notably, patients with low TTP-expressing breast cancer and lung adenocarcinoma had decreased survival rates and more aggressive tumors with increased necrosis. In addition, analysis across non-TCGA tumor gene expression databases identified a broad spectrum of human cancers having similarities with the TTP-low tumor gene signature, including pancreatic, bladder, and prostate cancer. TTP has documented roles in regulating mRNAs encoding inflammatory proteins, and pathway analysis identified several inflammatory pathways that are altered in tumors with low TTP expression. Surprisingly, the TTP-low tumor gene signature includes a core component of 20 under-expressed CREB target genes, suggesting that the regulation of CREB activity may be related to the tumor suppressor function of TTP. Thus, reduced levels of TTP are a potential biomarker for human cancers with poor outcome, and targeting the CREB pathway may be a therapeutic route for treating aggressive TTP-low tumors

    Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates T oxidative DNA damage induced aging

    Get PDF
    DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF- 16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation cor- responded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep- 1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1-/- primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself

    Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de‐differentiated state

    Get PDF
    Abstract Treatment of BRAF‐mutant melanomas with MAP kinase pathway inhibitors is paradigmatic of the promise of precision cancer therapy but also highlights problems with drug resistance that limit patient benefit. We use live‐cell imaging, single‐cell analysis, and molecular profiling to show that exposure of tumor cells to RAF/MEK inhibitors elicits a heterogeneous response in which some cells die, some arrest, and the remainder adapt to drug. Drug‐adapted cells up‐regulate markers of the neural crest (e.g., NGFR), a melanocyte precursor, and grow slowly. This phenotype is transiently stable, reverting to the drug‐naΓ―ve state within 9 days of drug withdrawal. Transcriptional profiling of cell lines and human tumors implicates a c‐Jun/ECM/FAK/Src cascade in de‐differentiation in about one‐third of cell lines studied; drug‐induced changes in c‐Jun and NGFR levels are also observed in xenograft and human tumors. Drugs targeting the c‐Jun/ECM/FAK/Src cascade as well as BET bromodomain inhibitors increase the maximum effect (E max) of RAF/MEK kinase inhibitors by promoting cell killing. Thus, analysis of reversible drug resistance at a single‐cell level identifies signaling pathways and inhibitory drugs missed by assays that focus on cell populations

    Role of LKB1-CRTC1 on Glycosylated COX-2 and Response to COX-2 Inhibition in Lung Cancer

    Get PDF
    Cyclooxygenase-2 (COX-2) directs the synthesis of prostaglandins including PGE-2 linking inflammation with mitogenic signaling. COX-2 is also an anticancer target, however, treatment strategies have been limited by unreliable expression assays and by inconsistent tumor responses to COX-2 inhibition

    Identification of Key Processes that Control Tumor Necrosis Factor Availability in a Tuberculosis Granuloma

    Get PDF
    Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-Ξ± (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy

    Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation

    Get PDF
    The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in EΞΌ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells

    The feasibility study for culture of Salmo trutta caspius by brackish water

    Get PDF
    Caspian trout is valuable, Commercial, anadromous and endemic fish species in the Caspian Sea so that, researchers attention have been focused on this species. At the moment, only pay attention to stocks rehabilitation that fisheries organization releases more than 300,000 fingerlings to the rivers ends to the Caspian Sea. Importance of this study consist (1) introducing a new species to the aquaculture system and (2) provide breeders in this research. we used from 2 treatments that consist with density of 10 kg/m^3 and 20 kg/m3 with 3 replication. Results showed, culture of Caspian trout is suitable with density 10 kg/m^3, so that weight gain, SGR and Daily growth mean are better than treatment 2(15-20 kg/m^3
    • …
    corecore