7 research outputs found

    Herman-Kluk propagator is free from zero-point energy leakage

    Get PDF
    Semiclassical techniques constitute a promising route to approximate quantum dynamics based on classical trajectories starting from a quantum-mechanically correct distribution. One of their main drawbacks is the so-called zero-point energy (ZPE) leakage, that is artificial redistribution of energy from the modes with high frequency and thus high ZPE to that with low frequency and ZPE due to classical equipartition. Here, we show that an elaborate semiclassical formalism based on the Herman-Kluk propagator is free from the ZPE leakage despite utilizing purely classical propagation. This finding opens the road to correct dynamical simulations of systems with a multitude of degrees of freedom that cannot be treated fully quantum-mechanically due to the exponential increase of the numerical effort.Comment: 6 pages 2 figure

    When Quantum Fluctuations Meet Structural Instabilities: The Isotope- and Pressure-Induced Phase Transition in the Quantum Paraelectric NaOH

    Full text link
    Anhydrous sodium hydroxide, a common and structurally simple compound, shows spectacular isotope effects: NaOD undergoes a first-order transition, which is absent in NaOH. By combining ab initio electronic structure calculations with path integrals, we show that NaOH is an unusual example of a quantum paraelectric: zero-point quantum fluctuations stretch the weak hydrogen bonds (HBs) until they become unstable and break. By strengthening HBs via isotope substitution or applied pressure, the system can be driven down to a broken-symmetry antiferroelectric phase. We also provide a simple quantitative criterion for HB breaking in layered crystals and show that nuclear quantum effects are crucial in paraelectric to ferroelectric transitions in hydrogen-bonded hydroxides

    Effets quantiques et anharmoniques dans les cristaux, surfaces et systèmes biologiques avec liaison hydrogène

    No full text
    Hydrogen bonds are weak intermolecular interactions that can modify the chemical environment of atomic nuclei and contribute to the anharmonicity of the potential energy surfaces. Furthermore, they involve the hydrogen atom, which, even at ambient conditions, can manifest non negligible quantum properties due to its small mass. Both the chemical structure and the dynamics of hydrogen-bonded systems are influenced by the anharmonicity and the quantum nature of the nuclei. In this thesis we investigate different molecular systems containing hydrogen bonds by describing the nuclei by approximated quantum methods that overcome the classical and harmonic pictures. The first system investigated is a phase transition in the solid state. Crystalline potassium hydroxide is characterized by the presence of weak hydrogen bonds and undergoes an order-disorder phase transition. The same transition happens in the deuterated crystal but the Curie temperature shifts up about 24 K due to the different proton and deuteron delocalization. Furthermore, a geometric H/D isotope effect characterizes the hydrogen bonds and it relates to the structural properties of the system. The second study is about the adsorption of an organic molecule on an oxide surface. Formic acid is the simplest carboxylic acid and a promising hydrogen carrier material. Its adsorption on the TiO2 anatase (101) surface presents competing adsorption configurations that are still debated. The molecular monodentate type of adsorption is characterized by the presence of a strong hydrogen bond, that stabilizes the molecule-surface interaction and make the proton shuttle between its stable position on the formic acid molecule and the surface. The third study is about a complex biomolecular system. A crucial example of the importance of hydrogen bonds in biological systems is the pairing of nucleobases in DNA, where the hydrogen bonds contribute to the stability of the DNA double helix. The Watson and Crick conformation of guanine and cytosine dimer presents three hydrogen bonds. The proton delocalization is relevant even at 300 K in the gas-phase dimer. Simulated vibrational spectra were obtained.Les liaisons hydrogène sont des interactions intermoléculaires faibles qui perturbent profondément l'environnement chimique des noyaux atomiques et contribuent à l'anharmonicité des surfaces d'énergie potentielle. De plus, ils impliquent l'atome d'hydrogène, qui, même dans des conditions ambiantes, peut manifester des propriétés quantiques non négligeables en raison de sa faible masse. La structure chimique et la dynamique des systèmes avec liaison hydrogène sont influencées par l'anharmonicité et la nature quantique des noyaux. Dans cette thèse, nous étudions différents systèmes solides ou moléculaires contenant des liaisons hydrogène en décrivant les noyaux par des méthodes quantiques approchées qui vont au-delà de l'image classique et harmonique. Le premier système étudié est une transition de phase à l'état solide. L'hydroxyde de potassium cristallin est caractérisé par la présence de liaisons hydrogène faibles et subit une transition de phase ordre-désordre. La même transition se produit dans le cristal deutéré mais la température de Curie augmente de 24 K en raison de la différente délocalisation du proton et du deutéron. De plus, un effet isotopique H/D géométrique caractérise les liaisons hydrogène et influence les propriétés structurales du système. La deuxième étude porte sur l'adsorption d'une molécule organique sur une surface d'oxyde. L'acide formique est l'acide carboxylique le plus simple et un matériau porteur d'hydrogène prometteur. Son adsorption sur la surface TiO2 anatase (101) présente des configurations d'adsorption concurrentes qui font encore débat. Le type d'adsorption moléculaire monodentate est caractérisé par la présence d'une forte liaison hydrogène, qui stabilise l'interaction molécule-surface et font faire la navette au proton entre sa position stable sur la molécule d'acide formique et la surface. La troisième étude porte sur un système biomoléculaire complexe. Un exemple crucial de l'importance des liaisons hydrogène dans les systèmes biologiques est l'appariement des nucléobases dans l'ADN, où les liaisons hydrogène contribuent à la stabilité de la double hélice de l'ADN. La conformation Watson et Crick du dimère de guanine et de cytosine présente trois liaisons hydrogène. La délocalisation du proton est pertinente même à 300 K dans le dimère en phase gazeuse. Des spectra vibrationnels simulés on été obtenus

    Effets quantiques et anharmoniques dans les cristaux, surfaces et systèmes biologiques avec liaison hydrogène

    No full text
    Les liaisons hydrogène sont des interactions intermoléculaires faibles qui perturbent profondément l'environnement chimique des noyaux atomiques et contribuent à l'anharmonicité des surfaces d'énergie potentielle. De plus, ils impliquent l'atome d'hydrogène, qui, même dans des conditions ambiantes, peut manifester des propriétés quantiques non négligeables en raison de sa faible masse. La structure chimique et la dynamique des systèmes avec liaison hydrogène sont influencées par l'anharmonicité et la nature quantique des noyaux. Dans cette thèse, nous étudions différents systèmes solides ou moléculaires contenant des liaisons hydrogène en décrivant les noyaux par des méthodes quantiques approchées qui vont au-delà de l'image classique et harmonique. Le premier système étudié est une transition de phase à l'état solide. L'hydroxyde de potassium cristallin est caractérisé par la présence de liaisons hydrogène faibles et subit une transition de phase ordre-désordre. La même transition se produit dans le cristal deutéré mais la température de Curie augmente de 24 K en raison de la différente délocalisation du proton et du deutéron. De plus, un effet isotopique H/D géométrique caractérise les liaisons hydrogène et influence les propriétés structurales du système. La deuxième étude porte sur l'adsorption d'une molécule organique sur une surface d'oxyde. L'acide formique est l'acide carboxylique le plus simple et un matériau porteur d'hydrogène prometteur. Son adsorption sur la surface TiO2 anatase (101) présente des configurations d'adsorption concurrentes qui font encore débat. Le type d'adsorption moléculaire monodentate est caractérisé par la présence d'une forte liaison hydrogène, qui stabilise l'interaction molécule-surface et font faire la navette au proton entre sa position stable sur la molécule d'acide formique et la surface. La troisième étude porte sur un système biomoléculaire complexe. Un exemple crucial de l'importance des liaisons hydrogène dans les systèmes biologiques est l'appariement des nucléobases dans l'ADN, où les liaisons hydrogène contribuent à la stabilité de la double hélice de l'ADN. La conformation Watson et Crick du dimère de guanine et de cytosine présente trois liaisons hydrogène. La délocalisation du proton est pertinente même à 300 K dans le dimère en phase gazeuse. Des spectra vibrationnels simulés on été obtenus.Hydrogen bonds are weak intermolecular interactions that can modify the chemical environment of atomic nuclei and contribute to the anharmonicity of the potential energy surfaces. Furthermore, they involve the hydrogen atom, which, even at ambient conditions, can manifest non negligible quantum properties due to its small mass. Both the chemical structure and the dynamics of hydrogen-bonded systems are influenced by the anharmonicity and the quantum nature of the nuclei. In this thesis we investigate different molecular systems containing hydrogen bonds by describing the nuclei by approximated quantum methods that overcome the classical and harmonic pictures. The first system investigated is a phase transition in the solid state. Crystalline potassium hydroxide is characterized by the presence of weak hydrogen bonds and undergoes an order-disorder phase transition. The same transition happens in the deuterated crystal but the Curie temperature shifts up about 24 K due to the different proton and deuteron delocalization. Furthermore, a geometric H/D isotope effect characterizes the hydrogen bonds and it relates to the structural properties of the system. The second study is about the adsorption of an organic molecule on an oxide surface. Formic acid is the simplest carboxylic acid and a promising hydrogen carrier material. Its adsorption on the TiO2 anatase (101) surface presents competing adsorption configurations that are still debated. The molecular monodentate type of adsorption is characterized by the presence of a strong hydrogen bond, that stabilizes the molecule-surface interaction and make the proton shuttle between its stable position on the formic acid molecule and the surface. The third study is about a complex biomolecular system. A crucial example of the importance of hydrogen bonds in biological systems is the pairing of nucleobases in DNA, where the hydrogen bonds contribute to the stability of the DNA double helix. The Watson and Crick conformation of guanine and cytosine dimer presents three hydrogen bonds. The proton delocalization is relevant even at 300 K in the gas-phase dimer. Simulated vibrational spectra were obtained

    Hyaluronic acid in the third millennium

    Get PDF
    Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations
    corecore