11 research outputs found

    Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers

    No full text
    Marine fungi associated with macroalgae are an ecologically important group that have a strong potential for industrial applications. In this study, twenty-two marine fungi isolated from the brown seaweed Fucus sp. were examined for their abilities to produce algal and plant biomass degrading enzymes. Growth of these isolates on brown and green algal biomass revealed a good growth, but no preference for any specific algae. Based on the analysis of enzymatic activities, macroalgae derived fungi were able to produce algae specific and (hemi-)cellulose degrading enzymes both on algal and plant biomass. However, the production of algae specific activities was lower than the production of cellulases and xylanases. These data revealed the presence of different enzymatic approaches for the degradation of algal biomass by macroalgae derived fungi. In addition, the results of the present study indicate our poor understanding of the enzymes involved in algal biomass degradation and the mechanisms of algal carbon source utilization by marine derived fungi. View Full-Tex

    Processing of soybean products by semipurified plant and microbial α-Galactosidases

    No full text
    Galactooligosaccharides (GO) are responsible for intestinal disturbances following ingestion of legume-derived products. Enzymatic reduction of GO level in these products is highly desirable to improve their acceptance. For this purpose, plant and microbial semipurified α-galactosidases were used for GO hydrolysis in soybean flour and soy molasses. α-Galactosidases from soybean germinating seeds, Aspergillus terreus, and Penicillium griseoroseum presented maximal activities at pH 4.0−5.0 and 45−65 °C. The KM,app values determined for raffinose by the soybean, A. terreus, and P. griseoroseum α-galactosidases were 3.44, 19.39, and 20.67 mM, respectively. The enzymes were completely inhibited by Ag+ and Hg2+, whereas only soybean enzyme was inhibited by galactose. A. terreus α-galactosidase was more thermostable than the enzymes from the other two sources. This enzyme maintained about 100% of its original activity after 3 h at 60 °C. The microbial α-galactosidases were more efficient for reducing GO in soybean flour and soy molasses than soybean enzyme

    Characterization of an exoinulinase produced by Aspergillus terreus CCT 4083 grown on sugar cane bagasse

    No full text
    Exoinulinase (β- D -fructan fructohydrolase, EC 3.2.1.80) secreted by Aspergillus terreus CCT4083 was obtained using sugar cane bagasse, an agroindustrial residue, as a carbon source. It was further purified from the supernatant culture in a rapid procedure. The enzyme presented 57 kDa on SDS-PAGE and 56 kDa on gel filtration chromatography. Inulin was hydrolyzed by the purified enzyme, yielding D -fructose as the main product. This enzyme showed maximum activity at pH 4.0 and 60 °C and maintained more than 90 and 75% of its original activity at 40 and 50 °C, respectively, after 3.5 h of preincubation. The K M values for inulin, sucrose, and raffinose were 11, 4.20, and 27.89 mM, respectively, and D -fructose was a competitive inhibitor (K i = 47.55 mM). The activation energies for sucrose, raffinose, and inulin were 10.4, 5.61, and 4.44 kcal/mol, respectively. The characteristics of A. terreus exoinulinase were compared to those of inulinases isolated from other organisms. The exoinulinase traits presented especially good thermostability and the ability to produce pure D -fructose, suggesting its application to the production of high-fructose syrup

    Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae

    No full text
    Production of ethanol with two corn endophytic fungi, Fusarium verticillioides and Acremonium zeae, was studied. The yield of ethanol from glucose, xylose and a mixture of both sugars were 0.47, 0.46 and 0.50 g/g ethanol/sugar for F. verticillioides and 0.37, 0.39 and 0.48 g/g ethanol/sugar for A. zeae. Both fungi were able to co-ferment glucose and xylose. Ethanol production from 40 g/L of pre-treated sugarcane bagasse was 4.6 and 3.9 g/L for F. verticillioides and A. zeae, respectively, yielding 0.31 g/g of ethanol per consumed sugar. Both fungi studied were capable of co-fermenting glucose and xylose at high yields. Moreover, they were able to produce ethanol directly from lignocellulosic biomass, demonstrating to be suitable microorganisms for consolidated bioprocessing

    Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides

    No full text
    A novel multienzyme complex, E1 C , and a free endoglucanase, E2 (GH5), from Fusarium verticillioides were purified. The E1 C contained two endoglucanases (GH6 and GH10), one cellobiohydrolase (GH7) and one xylanase (GH10). Maximum activity was observed at 80 °C for both enzymes and they were thermostable at 50 and 60 °C. The activation energies for E1 C and E2 were 21.3 and 27.5 kJ/mol, respectively. The K M for E1 C was 10.25 g/L while for E2 was 6.58 g/L. Both E1 C and E2 were activated by Mn 2+ and CoCl 2 while they were inhibited by SDS, CuSO 4 , FeCl 3 , AgNO 4 , ZnSO 4 and HgCl 2 . E1 C and E2 presented endo-b-1,3–1,4-glucanase activity. E1 C presented crescent activity towards cellopentaose, cellotetraose and cellotriose. E2 hydrolyzed the substrates cellopentaose, cellotetraose and cellotriose with the same efficiency. E1 C showed a higher stability and a better hydrolysis performance than E2, suggesting advantages resulting from the physical interaction between proteins

    Optimization of Endoglucanase and Xylanase activities from fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse

    No full text
    Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (25) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19

    The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet

    Get PDF
    Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans

    The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet

    No full text
    Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans

    The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet

    Get PDF
    Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans

    Hydrolysis of galacto-oligosaccharides in soy molasses by α -galactosidases and invertase from Aspergillus terreus

    No full text
    Two &#945; -galactosidase (P1 and P2) and one invertase present in the culture of Aspergillus terreus grown on wheat straw for 168 h at 28ºC were partially purified by gel filtration and hydrophobic interaction chromatographies. Optimum pH and temperatures for P1, P2 and invertase preparations were 4.5-5.0, 5.5 and 4.0 and 60, 55 and 65ºC, respectively. The K M app for Ï� -nitrophenyl-&#945; -D-galactopyranoside were 1.32 mM and 0.72 mM for P1 and P2, respectively, while the K M app value for invertase, using sacarose as a substrate was 15.66 mM. Enzyme preparations P1 and P2 maintained their activities after pre-incubation for 3 h at 50ºC and invertase maintained about 90% after 6 h at 55 ºC. P1 and P2 presented different inhibition sensitivities by Ag+, D-galactose, and SDS. All enzyme preparations hydrolyzed galacto-ologosaccharides present in soymolasses.<br>Duas &#945;-galactosidases (P1 e P2) e uma invertase produzidas no sobrenadante da cultura do fungo Aspergillus terreus quando crescido por 168 h a 28ºC com farelo de trigo como fonte de carbono foram parcialmente purificadas por cromatografias de gel filtração e interação hidrofóbica. O pH e temperatura ótimos para as preparações P1, P2 e invertase foram entre 4,5-5,0, 5,5 e 4,0 e 60, 55 e 65ºC, respectivamente. O K M app para Ï�-nitrofenil-&#945;-D-galactopiranosideo foi 1.32 mM e 0.72 mM para P1 e P2, respectivamente. O valor de K M app para invertase usando sacarose como substrato foi de 15,66 mM. As preparações enzimáticas P1 e P2 mantiveram suas atividades após 3 h de pré-incubação a 50 ºC e a invertase manteve cerca de 90% após 6 h a 55 ºC. P1 e P2 foram diferentemente sensíveis à inibição por Ag+, D-galactose e SDS. As preparações enzimáticas hidrolisaram os galactooligossacarídeos presentes em melaço de soja
    corecore