79 research outputs found

    The Equivalence Theorem and Effective Lagrangians

    Full text link
    We point out that the equivalence theorem, which relates the amplitude for a process with external longitudinally polarized vector bosons to the amplitude in which the longitudinal vector bosons are replaced by the corresponding pseudo-Goldstone bosons, is not valid for effective Lagrangians. However, a more general formulation of this theorem also holds for effective interactions. The generalized theorem can be utilized to determine the high-energy behaviour of scattering processes just by power counting and to simplify the calculation of the corresponding amplitudes. We apply this method to the phenomenologically most interesting terms describing effective interactions of the electroweak vector and Higgs bosons in order to examine their effects on vector-boson scattering and on vector-boson-pair production in ffˉf\bar{f} annihilation. The use of the equivalence theorem in the literature is examined.Comment: 20 pages LaTeX, BI-TP 94/1

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Supernova Interaction with a Circumstellar Medium

    Get PDF
    The explosion of a core collapse supernova drives a powerful shock front into the wind from the progenitor star. A layer of shocked circumstellar gas and ejecta develops that is subject to hydrodynamic instabilities. The hot gas can be observed directly by its X-ray emission, some of which is absorbed and re-radiated at lower frequencies by the ejecta and the circumstellar gas. Synchrotron radiation from relativistic electrons accelerated at the shock fronts provides information on the mass loss density if free-free absorption dominates at early times or the size of the emitting region if synchrotron self-absorption dominates. Analysis of the interaction leads to information on the density and structure of the ejecta and the circumstellar medium, and the abundances in these media. The emphasis here is on the physical processes related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag

    Optical Light Curves of Supernovae

    Full text link
    Photometry is the most easily acquired information about supernovae. The light curves constructed from regular imaging provide signatures not only for the energy input, the radiation escape, the local environment and the progenitor stars, but also for the intervening dust. They are the main tool for the use of supernovae as distance indicators through the determination of the luminosity. The light curve of SN 1987A still is the richest and longest observed example for a core-collapse supernova. Despite the peculiar nature of this object, as explosion of a blue supergiant, it displayed all the characteristics of Type II supernovae. The light curves of Type Ib/c supernovae are more homogeneous, but still display the signatures of explosions in massive stars, among them early interaction with their circumstellar material. Wrinkles in the near-uniform appearance of thermonuclear (Type Ia) supernovae have emerged during the past decade. Subtle differences have been observed especially at near-infrared wavelengths. Interestingly, the light curve shapes appear to correlate with a variety of other characteristics of these supernovae. The construction of bolometric light curves provides the most direct link to theoretical predictions and can yield sorely needed constraints for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes in Physics (http://link.springer.de/series/lnpp

    QCD Corrections and Non-standard Three Vector Boson Couplings in W+WW^+W^- Production at Hadron Colliders

    Get PDF
    The process p\,p\hskip-7pt\hbox{^{^{(\!-\!)}}} \rightarrow W^{+} W^{-} + X \rightarrow \ell^+_1 \nu_1 \ell^-_2 \bar \nu_2 + X is calculated to O(αs){\cal O}(\alpha_s) for general CC and PP conserving WWVWWV couplings (V=γ,ZV=\gamma,\, Z). The prospects for probing the WWVWWV couplings in this reaction are explored. The impact of O(αs){\cal O}(\alpha_s) QCD corrections and various background processes on the observability of non-standard WWVWWV couplings in W+WW^+ W^- production at the Tevatron and the Large Hadron Collider (LHC) is discussed in detail. Sensitivity limits for anomalous WWVWWV couplings are derived at next-to-leading order for the Tevatron and LHC center of mass energies, and are compared to the bounds which can be achieved in other processes. Unless a jet veto or a cut on the total transverse momentum of the hadrons in the event is imposed, the O(αs){\cal O}(\alpha_s) QCD corrections and the background from top quark production decrease the sensitivity of p\,p\hskip-7pt\hbox{^{^{(\!-\!)}}} \rightarrow W^{+} W^{-} + X \rightarrow \ell^+_1 \nu_1 \ell^-_2 \bar \nu_2 + X to anomalous WWVWWV couplings by a factor two to five.Comment: REVTEX 3, 62 pages, 21 Figures (not included available upon request), the postscript file of the complete paper is available at ftp://ucdhep.ucdavis.edu/han/ww/ww_paper.p

    The DZHK research platform: maximisation of scientific value by enabling access to health data and biological samples collected in cardiovascular clinical studies

    Get PDF
    The German Centre for Cardiovascular Research (DZHK) is one of the German Centres for Health Research and aims to conduct early and guideline-relevant studies to develop new therapies and diagnostics that impact the lives of people with cardiovascular disease. Therefore, DZHK members designed a collaboratively organised and integrated research platform connecting all sites and partners. The overarching objectives of the research platform are the standardisation of prospective data and biological sample collections among all studies and the development of a sustainable centrally standardised storage in compliance with general legal regulations and the FAIR principles. The main elements of the DZHK infrastructure are web-based and central units for data management, LIMS, IDMS, and transfer office, embedded in a framework consisting of the DZHK Use and Access Policy, and the Ethics and Data Protection Concept. This framework is characterised by a modular design allowing a high standardisation across all studies. For studies that require even tighter criteria additional quality levels are defined. In addition, the Public Open Data strategy is an important focus of DZHK. The DZHK operates as one legal entity holding all rights of data and biological sample usage, according to the DZHK Use and Access Policy. All DZHK studies collect a basic set of data and biosamples, accompanied by specific clinical and imaging data and biobanking. The DZHK infrastructure was constructed by scientists with the focus on the needs of scientists conducting clinical studies. Through this, the DZHK enables the interdisciplinary and multiple use of data and biological samples by scientists inside and outside the DZHK. So far, 27 DZHK studies recruited well over 11,200 participants suffering from major cardiovascular disorders such as myocardial infarction or heart failure. Currently, data and samples of five DZHK studies of the DZHK Heart Bank can be applied for

    Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis

    No full text
    Background - : Immunoglobulin amyloid light-chain (AL)-related cardiac amyloidosis (CA) has a worse prognosis than either wild-type (ATTRwt) or mutant (ATTRm) transthyretin (TTR) CA. Detailed echocardiographic studies have been performed in AL amyloidosis but not in TTR amyloidosis and might give insight into this difference. We assessed cardiac structure and function and outcome in a large population of patients with CA and compared findings in TTR and AL-related disease. Methods and Results - : We analyzed 172 patients with CA (AL amyloidosis, n=80; ATTRm, n=36; ATTRwt, n=56) by standard echocardiography and 2-dimensional speckle-tracking imaging-derived left ventricular (LV) longitudinal (LS), radial, and circumferential strains. Despite a preserved LV ejection fraction (55\ub112%), LS was severely impaired in CA. Standard measures of LV function and speckle-tracking imaging worsened as wall thickness increased, whereas apical LS was preserved regardless of the pathogenesis of CA and the degree of wall thickening. Compared with ATTRm and AL amyloidosis, ATTRwt was characterized by greater LV wall thickness and lower ejection fraction. LS was more depressed in both ATTRwt and AL amyloidosis (-11\ub13% and -12\ub14%, respectively, P=0.54) than in ATTRm (-15\ub14%, P<0.01 versus AL amyloidosis and ATTRwt). TTR-related causes were favorable predictors of survival, whereas LS and advanced New York Heart Association class were negative predictors. CONCLUSIONS - : In patients with CA, worsening LV function correlated with increasing wall thickness regardless of pathogenesis. Patients with ATTRwt had a statistically greater wall thickness but lesser mortality than those with AL amyloidosis, despite very similar degrees of LS impairment. This paradox suggests an additional mechanism for LV dysfunction in AL amyloidosis, such as previously demonstrated light-chain toxicity. \ua9 2014 American Heart Association, Inc
    corecore