7,943 research outputs found

    Spin Coherence During Optical Excitation of a Single NV Center in Diamond

    Full text link
    We examine the quantum spin state of a single nitrogen-vacancy (NV) center in diamond at room temperature as it makes a transition from the orbital ground-state (GS) to the orbital excited-state (ES) during non-resonant optical excitation. While the fluorescence read-out of NV-center spins relies on conservation of the longitudinal spin projection during optical excitation, the question of quantum phase preservation has not been examined. Using Ramsey measurements and quantum process tomography, we establish limits on NV center spin decoherence induced during optical excitation. Treating the optical excitation and ES spin precession as a quantum process, we measure a process fidelity of F=0.87\pm0.03, which includes ES spin dephasing during measurement. Extrapolation to the moment of optical excitation yields F\approx0.95. This result demonstrates that ES spin interactions may be used as a resource for quantum control because the quantum spin state can survive incoherent orbital transitions.Comment: 12 pages, 3 figure

    Binary Reactive Adsorbate on a Random Catalytic Substrate

    Full text link
    We study the equilibrium properties of a model for a binary mixture of catalytically-reactive monomers adsorbed on a two-dimensional substrate decorated by randomly placed catalytic bonds. The interacting AA and BB monomer species undergo continuous exchanges with particle reservoirs and react (A+BA + B \to \emptyset) as soon as a pair of unlike particles appears on sites connected by a catalytic bond. For the case of annealed disorder in the placement of the catalytic bonds this model can be mapped onto a classical spin model with spin values S=1,0,+1S = -1,0,+1, with effective couplings dependent on the temperature and on the mean density qq of catalytic bonds. This allows us to exploit the mean-field theory developed for the latter to determine the phase diagram as a function of qq in the (symmetric) case in which the chemical potentials of the particle reservoirs, as well as the AAA-A and BBB-B interactions are equal.Comment: 12 pages, 4 figure

    Rate dependent shear bands in a shear transformation zone model of amorphous solids

    Full text link
    We use Shear Transformation Zone (STZ) theory to develop a deformation map for amorphous solids as a function of the imposed shear rate and initial material preparation. The STZ formulation incorporates recent simulation results [Haxton and Liu, PRL 99 195701 (2007)] showing that the steady state effective temperature is rate dependent. The resulting model predicts a wide range of deformation behavior as a function of the initial conditions, including homogeneous deformation, broad shear bands, extremely thin shear bands, and the onset of material failure. In particular, the STZ model predicts homogeneous deformation for shorter quench times and lower strain rates, and inhomogeneous deformation for longer quench times and higher strain rates. The location of the transition between homogeneous and inhomogeneous flow on the deformation map is determined in part by the steady state effective temperature, which is likely material dependent. This model also suggests that material failure occurs due to a runaway feedback between shear heating and the local disorder, and provides an explanation for the thickness of shear bands near the onset of material failure. We find that this model, which resolves dynamics within a sheared material interface, predicts that the stress weakens with strain much more rapidly than a similar model which uses a single state variable to specify internal dynamics on the interface.Comment: 10 pages, 13 figures, corrected typos, added section on rate strengthening vs. rate weakening material

    Critical points and resonance of hyperplane arrangements

    Get PDF
    If F is a master function corresponding to a hyperplane arrangement A and a collection of weights y, we investigate the relationship between the critical set of F, the variety defined by the vanishing of the one-form w = d log F, and the resonance of y. For arrangements satisfying certain conditions, we show that if y is resonant in dimension p, then the critical set of F has codimension at most p. These include all free arrangements and all rank 3 arrangements.Comment: revised version, Canadian Journal of Mathematics, to appea

    Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems.

    Get PDF
    Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions

    Critical Points and Resonance of Hyperplane Arrangements

    Get PDF
    If Φλ\Phi_\lambda is a master function corresponding to a hyperplane arrangement A\mathcal A and a collection of weights λ\lambda, we investigate the relationship between the critical set of Φλ\Phi_\lambda, the variety defined by the vanishing of the one-form ωλ=dlogΦλ\omega_\lambda=\operatorname{d} \log \Phi_\lambda, and the resonance of λ\lambda. For arrangements satisfying certain conditions, we show that if λ\lambda is resonant in dimension pp, then the critical set of Φλ\Phi_\lambda has codimension at most pp. These include all free arrangements and all rank 33 arrangements

    Search for the disappearance of muon antineutrinos in the NuMI neutrino beam

    Get PDF
    We report constraints on muon antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 +/- 11.7(stat) ^{+10.2}_{-8.9}(syst) events under the assumption |dm2bar|=2.32x10^-3 eV^2, snthetabar=1.0. A fit to the two-flavor oscillation approximation constrains |dm2bar|<3.37x10^-3 eV^2 at the 90% confidence level with snthetabar=1.0

    A relativistic chiral quark model for pseudoscalar emission from heavy mesons

    Get PDF
    The amplitudes for one-pion mediated transitions between heavy meson excited states are obtained in the framework of the relativistic chiral quark model. The effective coupling constants to pions and the decay widths of excited heavy mesons with l<=2 for non-radially excited, and the l=0 radially excited mesons are presented for both charmed and beauty mesons. We also discuss the allowed decays of strange excited heavy mesons by emission of a K-meson.Comment: 20 pages, revte

    Canadian Society for Exercise Physiology Position Paper: Resistance Training in Children and Adolescents

    Get PDF
    Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However the training and instruction must be appropriate for children and adolescents involving a proper warm-up, cool-down and an appropriate choice of exercises. It is recommended that low-to-moderate intensity resistance should be utilized 2-3 times per week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic style lifting, plyometrics and balance training, which can enhance strength, power, co-ordination and balance. However specific guidelines for these more advanced techniques need to be established for youth. In conclusion, a RT program that is within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises which can lead to functional (i.e. muscular strength, endurance, power, balance and co-ordination) and health benefits
    corecore