179 research outputs found
Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains
The genome sequence of a novel virulent bacteriophage, named “ C130_2”, that is morphologically a member of the family
Myoviridae is reported. The 41,775-base-pair double-stranded DNA genome of C130_2 contains 59 ORFs but exhibits
overall low sequence similarity to bacteriophage genomes for which sequences are publicly available. Phylogenetic analysis
indicated that C130_2 represents a new phage type. C130_2 could be propagated well on enterohemorrhagic Escherichia
coli (EHEC) O157:H7 and other pathogenic E. coli strains, as well as on strains of various Shigella species
Draft Genome Sequences of Pandrug-Resistant Serratia marcescens Clinical Isolates Harboring bla NDM-1
The draft genome sequences of two clonal, pandrug-resistant Serratia marcescens clinical isolates were determined. The resistance phenotype was plasmid driven, as 14 of 17 resistance genes were present on large IncFIB(K), IncHI2, and IncA/C2 plasmids indicating a large pool of transmissible antibiotic resistance genes
Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters
Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla(VIM-)(1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context.Peer reviewe
Insights into a Novel blaKPC-2-Encoding IncP-6 Plasmid Reveal Carbapenem-Resistance Circulation in Several Enterobacteriaceae Species from Wastewater and a Hospital Source in Spain
Untreated wastewater, particularly from hospitals and other healthcare facilities, is considered to be a reservoir for multidrug-resistant bacteria. However, its role in the spread of antibiotic resistances in the human population remains poorly investigated. We used whole genome sequencing (WGS) to analyze 25 KPC-2-producing Enterobacteriaceae isolates from sewage water collected during a 3-year period and three clinical Citrobacter freundii isolates from a tertiary hospital in the same collection area in Spain. We detected a common, recently described, IncP-6 plasmid carrying the gene blaKPC-2 in 21 isolates from both sources. The plasmid was present in diverse environmental bacterial species of opportunistic pathogens such as C. freundii, Enterobacter cloacae, Klebsiella oxytoca, and Raoultella ornithinolytica. The 40,186 bp IncP-6 plasmid encoded 52 coding sequences (CDS) and was composed of three uniquely combined regions that were derived from other plasmids recently reported in different countries of South America. The region harboring the carbapenem resistance gene (14 kb) contained a Tn3 transposon disrupted by an ISApu-flanked element and the core sequence composed by ISKpn6 / blaKPC-2 / ?blaTEM-1 / ISKpn27. We document here the presence of a novel promiscuous blaKPC-2 plasmid circulating in environmental bacteria in wastewater and human populations
Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla CTX-M-15 at a German University-Hospital
Background: Multi-drug resistant Klebsiella pneumoniae strains are a common cause of health care associated infections worldwide. Clonal spread of Klebsiella pneumoniae isolates carrying plasmid mediated CTX-M-15 have been commonly reported. Limited data is available regarding dissemination of chromosomally encoded CTX-M-15 in Klebsiella pneumoniae worldwide.
Results: We examined 23 non-repetitive ESBL-producing Klebsiella pneumoniae strains isolated from clinical specimens over a period of 4 months in a German University Hospital. All isolates were characterized to determine their genetic relatedness using Pulsed-Field Gel Electrophoresis (PFGE) and Multi Locus Sequence Typing (MLST). PFGE revealed three clusters (B1, B2, and B3) with a sub-cluster (A3) comprising of 10 isolates with an identical PFGE pattern. All strains of the cluster B3 with similar PFGE patterns were typed as ST101, indicating an outbreak situation. The ESBL allele bla CTX-M-15 was identified in 16 (69.6 %) of all isolates, including all of the outbreak strains. Within the A3 sub-cluster, the CTX-M-15 allele could not be transferred by conjugation. DNA hybridization studies suggested a chromosomal location of bla CTX-M-15. Whole genome sequencing located CTX-M-15 within a complete ISEcp-1 transposition unit inserted into an ORF encoding for a putative membrane protein. PCR-based analysis of the flanking regions demonstrated that insertion into this region is unique and present in all outbreak isolates.
Conclusion: This is the first characterization of a chromosomal insertion of bla CTX-M-15 in Klebsiella pneumonia ST101, a finding suggesting that in Enterobacteriaceae, chromosomal locations may also act as reservoirs for the spread of bla CTX-M-15 encoding transposition units
Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany
BACKGROUND:Multiresistant Gram-negative bacteria producing extended-spectrum beta-lactamases (ESBLs) are an emerging problem in human and veterinary medicine. This study focused on comparative molecular characterization of beta-lactamase and ESBL-producing Enterobacteriaceae isolates from central Hesse in Germany. Isolates originated from humans, companion animals (dogs and cats) and horses.
RESULTS:In this study 153 (83.6%) of the human isolates (n=183) and 163 (91.6%) of the animal isolates (n=178) were confirmed as ESBL producers by PCR and subsequent sequencing of the PCR amplicons. Predominant ESBL subtypes in human and animal samples were CTX-M-15 (49.3%) and CTX-M-1 (25.8%) respectively. Subtype blaCTX-M-2 was found almost exclusively in equine and was absent from human isolates. The carbapenemase OXA-48 was detected in 19 ertapenem-resistant companion animal isolates in this study. The Plasmid-encoded quinolone resistance (PMQR) gene aac(´6)-Ib-cr was the most frequently detected antibiotic- resistance gene present in 27.9% of the human and 36.9% of the animal ciprofloxacin-resistant isolates. Combinations of two or up to six different resistance genes (penicillinases, ESBLs and PMQR) were detected in 70% of all isolates investigated. The most frequent species in this study was Escherichia coli (74%), followed by Klebsiella pneumoniae (17.5%), and Enterobacter cloacae (4.2%). Investigation of Escherichia coli phylogenetic groups revealed underrepresentation of group B2 within the animal isolates.
CONCLUSIONS:Isolates from human, companion animals and horses shared several characteristics regarding presence of ESBL, PMQR and combination of different resistance genes. The results indicate active transmission and dissemination of multi-resistant Enterobacteriaceae among human and animal populations
Overexpression of the third H-NS paralogue H-NS2 compensates fitness loss in hns mutants of the enteroaggregative Escherichia coli strain 042
Members of the H-NS protein family play a role both in the chromosome architecture and in the regulation of gene expression in bacteria. The genomes of the enterobacteria encode an H-NS paralogue, the StpA protein. StpA displays specific regulatory properties and provides a molecular backup for H-NS. Some enterobacteria also encode third H-NS paralogues. This is the case of the enteroaggregative E. coli (EAEC) strain 042, which encodes the hns, stpA and hns2 genes. We provide in this paper novel information about the role of the H-NS2 protein in strain 042. A C > T transition in the hns2 promoter leading to increased H-NS2 expression is readily selected in hns mutants. Increased H-NS2 expression partially compensates for H-NS loss. H-NS2 levels are critical for the strain 042 fitness. Under some circumstances, high H-NS2 expression levels dictated by the mutant hns2 promoter can be deleterious. The selection of T > C revertants or of clones harboring insertional inactivations of the hns2 gene can then occur. Temperature also plays a relevant role in the H-NS2 regulatory activity. At 37 °C, H-NS2 targets a subset of the H-NS repressed genes contributing to their silencing. When temperature drops to 25 °C, the repressory ability of H-NS2 is significantly reduced. At low temperature, H-NS plays the main repressory role
- …