1,448 research outputs found
Observation of resonant interactions among surface gravity waves
We experimentally study resonant interactions of oblique surface gravity
waves in a large basin. Our results strongly extend previous experimental
results performed mainly for perpendicular or collinear wave trains. We
generate two oblique waves crossing at an acute angle, while we control their
frequency ratio, steepnesses and directions. These mother waves mutually
interact and give birth to a resonant wave whose properties (growth rate,
resonant response curve and phase locking) are fully characterized. All our
experimental results are found in good quantitative agreement with four-wave
interaction theory with no fitting parameter. Off-resonance experiments are
also reported and the relevant theoretical analysis is conducted and validated.Comment: 11 pages, 7 figure
Observation of gravity-capillary wave turbulence
We report the observation of the cross-over between gravity and capillary
wave turbulence on the surface of mercury. The probability density functions of
the turbulent wave height are found to be asymmetric and thus non Gaussian. The
surface wave height displays power-law spectra in both regimes. In the
capillary region, the exponent is in fair agreement with weak turbulence
theory. In the gravity region, it depends on the forcing parameters. This can
be related to the finite size of the container. In addition, the scaling of
those spectra with the mean energy flux is found in disagreement with weak
turbulence theory for both regimes
Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-Type Galaxies from the SMAKCED Project. I. Kinematically Decoupled Cores and Implications for Infallen Groups in Clusters
We present evidence for kinematically decoupled cores (KDCs) in two dwarf
early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied
as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey.
These KDCs have radii of 1.8'' (0.14 kpc) and 4.2'' (0.33 kpc), respectively.
Each of these KDCs is distinct from the main body of its host galaxy in two
ways: (1) inverted sense of rotation; and (2) younger (and possibly more
metal-rich) stellar population. The observed stellar population differences are
probably associated with the KDC, although we cannot rule out the possibility
of intrinsic radial gradients in the host galaxy. We describe a statistical
analysis method to detect, quantify the significance of, and characterize KDCs
in long-slit rotation curve data. We apply this method to the two dE galaxies
presented in this paper and to five other dEs for which KDCs have been reported
in the literature. Among these seven dEs, there are four significant KDC
detections, two marginal KDC detections, and one dE with an unusual central
kinematic anomaly that may be an asymmetric KDC.The frequency of occurence of
KDCs and their properties provide important constraints on the formation
history of their host galaxies. We discuss different formation scenarios for
these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas
accretion can explain the properties of these KDCs. Both of these mechanisms
require that the progenitor had a close companion with a low relative velocity.
This suggests that KDCs were formed in galaxy pairs residing in a poor group
environment or in isolation whose subsequent infall into the cluster quenched
star formation.Comment: 14 pages, accepted for publication in Ap
The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hβ, Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [α/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [α/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which ∼40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ≤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (σe≤ 100 km s−1 or ∼2 × 1010 M⊙). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population. The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [α/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (≥10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass–metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above ∼3.5 × 1010 M⊙) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.Peer reviewe
Observational constraints to boxy/peanut bulge formation time
Boxy/peanut bulges are considered to be part of the same stellar structure as
bars and both could be linked through the buckling instability. The Milky Way
is our closest example. The goal of this letter is determining if the mass
assembly of the different components leaves an imprint in their stellar
populations allowing to estimate the time of bar formation and its evolution.
To this aim we use integral field spectroscopy to derive the stellar age
distributions, SADs, along the bar and disc of NGC 6032. The analysis shows
clearly different SADs for the different bar areas. There is an underlying old
(>=12 Gyr) stellar population for the whole galaxy. The bulge shows star
formation happening at all times. The inner bar structure shows stars of ages
older than 6 Gyrs with a deficit of younger populations. The outer bar region
presents a SAD similar to that of the disc. To interpret our results, we use a
generic numerical simulation of a barred galaxy. Thus, we constrain, for the
first time, the epoch of bar formation, the buckling instability period and the
posterior growth from disc material. We establish that the bar of NGC 6032 is
old, formed around 10 Gyr ago while the buckling phase possibly happened around
8 Gyr ago. All these results point towards bars being long-lasting even in the
presence of gas.Comment: Accepted for publication in MNRAS Letter
Observation of intermittency in wave turbulence
We report the observation of intermittency in gravity-capillary wave
turbulence on the surface of mercury. We measure the temporal fluctuations of
surface wave amplitude at a given location. We show that the shape of the
probability density function of the local slope increments of the surface waves
strongly changes across the time scales. The related structure functions and
the flatness are found to be power laws of the time scale on more than one
decade. The exponents of these power laws increase nonlinearly with the order
of the structure function. All these observations show the intermittent nature
of the increments of the local slope in wave turbulence. We discuss the
possible origin of this intermittency.Comment: new version to Phys. Rev. Let
- …
