130 research outputs found
Scaling of the Critical Function for the Standard Map: Some Numerical Results
The behavior of the critical function for the breakdown of the homotopically
non-trivial invariant (KAM) curves for the standard map, as the rotation number
tends to a rational number, is investigated using a version of Greene's residue
criterion. The results are compared to the analogous ones for the radius of
convergence of the Lindstedt series, in which case rigorous theorems have been
proved. The conjectured interpolation of the critical function in terms of the
Bryuno function is discussed.Comment: 26 pages, 3 figures, 13 table
Greene's Residue Criterion for the Breakup of Invariant Tori of Volume-Preserving Maps
Invariant tori play a fundamental role in the dynamics of symplectic and
volume-preserving maps. Codimension-one tori are particularly important as they
form barriers to transport. Such tori foliate the phase space of integrable,
volume-preserving maps with one action and angles. For the area-preserving
case, Greene's residue criterion is often used to predict the destruction of
tori from the properties of nearby periodic orbits. Even though KAM theory
applies to the three-dimensional case, the robustness of tori in such systems
is still poorly understood. We study a three-dimensional, reversible,
volume-preserving analogue of Chirikov's standard map with one action and two
angles. We investigate the preservation and destruction of tori under
perturbation by computing the "residue" of nearby periodic orbits. We find tori
with Diophantine rotation vectors in the "spiral mean" cubic algebraic field.
The residue is used to generate the critical function of the map and find a
candidate for the most robust torus.Comment: laTeX, 40 pages, 26 figure
Recommended from our members
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities
We provide an overview of the design and capabilities of the near-infrared
spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is
designed to be capable of carrying out low-resolution () prism
spectroscopy over the wavelength range m and higher resolution
( or ) grating spectroscopy over
m, both in single-object mode employing any one of five fixed
slits, or a 3.13.2 arcsec integral field unit, or in multiobject
mode employing a novel programmable micro-shutter device covering a
3.63.4~arcmin field of view. The all-reflective optical chain of
NIRSpec and the performance of its different components are described, and some
of the trade-offs made in designing the instrument are touched upon. The
faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its
dependency on the energetic particle environment that its two detector arrays
are likely to be subjected to in orbit are also discussed
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities
We provide an overview of the design and capabilities of the near-infrared
spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is
designed to be capable of carrying out low-resolution () prism
spectroscopy over the wavelength range m and higher resolution
( or ) grating spectroscopy over
m, both in single-object mode employing any one of five fixed
slits, or a 3.13.2 arcsec integral field unit, or in multiobject
mode employing a novel programmable micro-shutter device covering a
3.63.4~arcmin field of view. The all-reflective optical chain of
NIRSpec and the performance of its different components are described, and some
of the trade-offs made in designing the instrument are touched upon. The
faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its
dependency on the energetic particle environment that its two detector arrays
are likely to be subjected to in orbit are also discussed
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
How gold is the golden ratio?
We discuss the well-known importance of the golden ratio in Science and Art with few examples: its theoretical value is often taken as a good model in many applications. How good is this model in practice? We agree with many authors that more precision is needed giving, when possible, a measure of the best possible approximation. We deal with several definitions and representations, also comparing this irrational number and its rational approximations to other similar constants
- …